

Valley Clean Energy CAC Meeting – Thursday, August 26, 2021 via video/teleconference

<u>Charge</u>: Assist staff and consultants in evaluating feasibility and creating a road map for both carbon-neutral and carbon-free-hourby-hour power by 2030.¹

<u>Tasks</u>:

- Support VCE staff's timetable for performing and completing this effort
- Assist in input for and evaluation of model development
- Evaluate different types of power that can be included in model
- Consider impacts of plan on future IRP

EJ component – consider importance of some local resources because of impact on local jobs.

1) Strategic plan reference Goal 2 and Objective 2.5.

** Note: Decarbonization and Grid Innovation (Goal 4) were initially part of the Task Group scope, but the group decided to make that part of a future Task Group due to the volume of work associated with Goal 2 and Objective 2.5.

Item 8 - Carbon Neutral Task Group Update: Timeline

Q1 2021

- **Q2 2021**
- Board approves Strategic Plan (10/8/2020)
- Task Group formed (1/28/21)
- Identify consultants
- Begin defining SOW

- Compile inputs/ assumptions
- Identify eligible technologies
- Finalize consultant selection
- Board approval,
- if necessary
- Metrics to consider

- Kickoff analysis
- Analyze findings &

Q3 2021

- prepare initial plans
 - CAC & Board

engagement

- Finalize plans
- Develop final report

Q4 2021

• CAC & Board engagement

NOTE: The next IRP will be due no sooner than May 1, 2022, but appears likely to be extended. The CPUC is considering a <u>staff proposal</u> to streamline IRP/RPS filings, which could move the next full IRP filing to 2023 (with new IRPs filed every three years thereafter).

Item 8 - Carbon Neutral Task Group Update: Power Source Options

Renewable Electricity

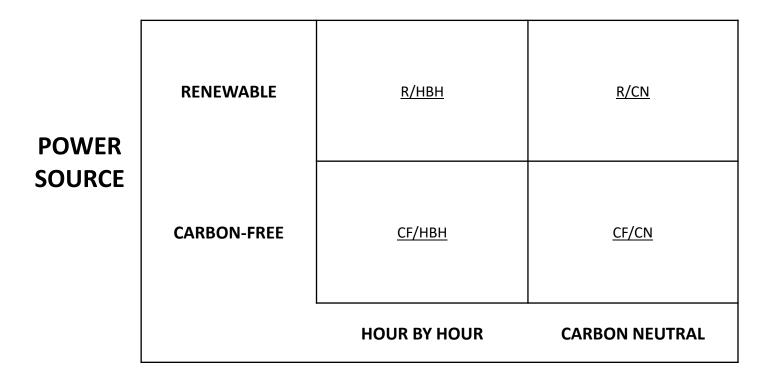
Includes "biomass, solar thermal, photovoltaic, wind, geothermal, fuel cells using renewable fuels, small hydroelectric generation of 30 megawatts or less, digester gas, municipal solid waste conversion, landfill gas, ocean wave, ocean thermal, or tidal current", [(Public Resources Code § 25741), Renewables Portfolio Standard (RPS). (Public Utilities Code § 399.11 et seq.)] Renewable electricity is assumed to be free of GHG emissions.

Carbon Free Electricity

Any electricity that meets the definition of renewable electricity above plus other sources considered zero emission. These zero emission sources now in California include existing large hydro (greater than 30 MW) and existing nuclear. New technologies not now included in the zero-emission category can be added in the future. Carbon Free power uses no fossil fuel generation. See https://focus.senate.ca.gov/sb100/faqs for FAQs on existing large hydro and existing nuclear and their inclusion in SB 100. The percent of the power that must meet RPS is governed by SB 100 (De Leon, 2018) and shall be equal to or greater than 60% for 2030 and beyond. By 2045 all electricity in California is to be Carbon Free.

Item 8 - Carbon Neutral Task Group Update: Analysis Time Frames

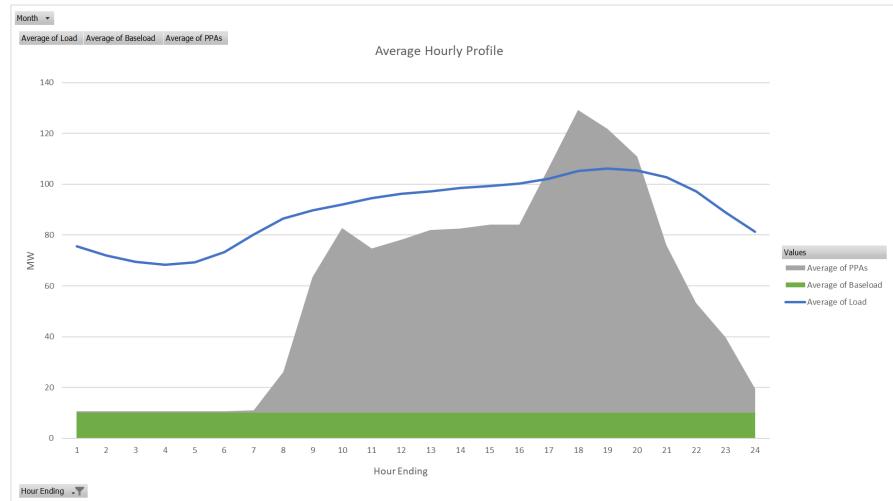
Hour by Hour // 24/7


The Carbon Content of the Electricity provided is analyzed on an hour by hour basis. And for our purposes is either Renewable or Carbon Free Electricity each and every hour of the day. (8,760 hrs/yr)

Carbon Neutral

The net carbon content of the electricity is analyzed over a period of time (usually a year) and the net carbon content is zero. During this period both sources that emit carbon and those that do not can be used, but the net carbon emissions are zero. Net zero can be achieved if zero carbon electricity is overproduced at certain times and that excess zero carbon electricity is demonstrated through available data to displace carbon emitting electricity on the grid at that time. If enough zero carbon electricity is overproduced, the net carbon emissions can be zero.

Item 8 - Carbon Neutral Task Group Update: Portfolios



ANALYSIS TIME FRAME

"R/HBH/CF/CN": Renewable /Hour by hour/Carbon free/Carbon neutral

Item 8 - Carbon Neutral Task Group Update: Portfolio technology diversity will be needed

1) Baseload is an assumed future agreement to satisfy CPUC Order.

2) Contracted PPAs will satisfy a portion of the portfolio but gaps remain that vill be addressed in this Task Group study.

Item 8 – Carbon Neutral Task Group: Project Scope, Schedule and Status

Project Schedule and Status	5					
	Month					
Task / Sub-Task	1	2	3	4	5	6
Project Management						
Kick-off						
Progress updates						
Weekly project controls						
Future Industry Trends						
Research future energy trends						
Data request						
Validate with VCE						
Load Profile Construction						
Review load and BTM resource data						
Prepare 8,760 and statistical inputs						
IRP 8,760 forecast						
Existing and planned 8,760 forecasting						
Agree key risks and sensitivities						
Validate with VCE						
Resource Cost Estimation						
Update resource cost estimates						
Capital and operating costs by technology						
Fuel and carbon mitigation costs						
Agree key risks and sensitivities						
Validate with VCE						
Resource Portfolio Construction						
Configure production cost model						
Identify least cost 8,760 100% renewables and zero carbon portfolios						
Identify least cost annual 100% renewables and zero carbon portfolios						
Minimize scenario costs						
Consider market interactions						
Agree key risks and sensitivities						
Validate with VCE						
Risk Analysis	_					
Identify key risks						
Develop risk mitigations						
Validate with VCE						
Documentation						
Draft portfolio study report						
Develop risk report						
Revise portfolio study report	L					
Develop data pack						

- Future Industry Trends research is almost completed
 - Validation with Community Advisory Committee (CAC)
- Sensitivities under consideration
 - o EV penetration
 - Building electrification penetration
 - Rooftop solar penetration
 - Weather / climate change
- Data request fulfilment well underway
- Load profile construction commencing
- Resource cost estimate research mid-way

Item 8 – Carbon Neutral Task Group: Key Future Zero Carbon Generation Technologies

Name	Category	Fuel Type	Description	Energy Efficiency	Advantages	Disadvantages	Availability	Potential Breakthroughs
Thermal Genera	tion Technologie	!S						
Combined Cycle Turbine (CCGT)	Combustion	Hydrogen / Renewable Methane / Methane + CCS	Generates power via combustion in a combustion turbine followed by a steam turbine to use waste heat	50-60%	 Higher efficiency than OCGT Mature technology Fuel flexible Provides intertia 	 Higher capex than OCGT Emissions from combustion Less flexible than OCGT 	 Limited availability of hydrogen or renewable methane Pilot projects only 	Higher temp combustion turbine
Open Cycle Turbine (OCGT)	Combustion	Hydrogen / Renewable Methane / Methane + CCS	Generates power via combustion in a gas turbine	30-40%	 Higher ramp rate than CCGT Mature technology Fuel flexible Provides intertia Lower capex than CCGT 	 Lower efficiency than CCGT Emissions from combustion Less flexible than a OCGT 	 Limited availability of hydrogen or renewable methane Pilot projects only 	Higher temp combustion turbine
Carbon Capture and Sequestration (CCS)	Combustion	Coal / Methane	Captures and stores CO2 from coal or methane combustion to prevent it from enterring the atmosphere	80%	Allows use of relatively low cost methane and coal fuel	 Unproven technology Generates waste stream 	Commercially available Pilot projects only	• New electrochemical process converts CO2 through a mineralization approach and produces green hydrogen.
Small Modular Reactor	Fission	Uranium	Generates heat from fission, used to drive steam turbine	33-37%	 Smaller (<300 MW) than conventional nuclear (<1,600 MW) Lower and more stable fuel costs compared to methane 	 Relatively immature technology Potential community resistence 	Pilot projects only	• None identified
Pebble Bed Reactor	Fission	Uranium	Generates heat from fission, used to drive steam turbine	Up to 50%	 Smaller (<300 MW) than conventional nuclear (<1,600 MW) Lower and more stable fuel costs compared to methane Fuel pebbles touted as inherently safe 	 Relatively immature technology Potential community resistence 	• Pilot projects only	• None identified
Proton Exchange Membrane Fuel Cell (PEMFC)	Chemical	Hydrogen	Fuel cell generates electricity and water using hydrogen	30-50%	 Higher ramp rate than SOFC Maturing technology 	 Lower efficiency than SOFC Most only run on hydrogen 	Limited availability of hydrogen Pilot projects only	 DOE targetting higer efficiencies and increased fuel stack hours
Solid Oxide Fuel Cell (SOFC)	Chemical	Hydrogen / Renewable Methane	Fuel cell generates electricity and water using hydrogen or methane	63-81%	• Higher efficiency than PEMFC	 Lower efficiency than SOFC Immature technology Less flexible than SOFC 	 Limited availability of hydrogen Pilot projects only 	• DOE targetting higer efficiencies and increased fuel stack hours

• CAC feedback: Are we missing any technologies, or does any of the key information need to be updated?

Item 8 – Carbon Neutral Task Group: Key Future Renewable Energy Technologies

Name	Category	Capacity Factor	Description	Advantages	Disadvantages	Availability	Potential Breakthroughs
Generation T	echnologies						
Onshore Wind	Wind	51%	A windmill is used to turn a turbine to generate electricity on land	 Mature technology Relatively low \$/kWh capex Relatively constant generation 	Community resistance Limited resource availability	 Commercially available Limited to areas of high wind resource 	• Larger turbines increasing efficiency and reducing costs
Offshore Wind	Wind	40-50%	Floating windmills are used to generate electricity in the ocean	 Mature technology Relatively low \$/kWh capex Relatively constant generation 	Community resistance Limited resource availability	 Commercially available Limited to areas of high wind resource Limited to coast areas 	• Larger turbines increasing efficiency and reducing costs
Single Axis Solar PV	Solar	30-35%	Photo-voltaic(PV) panels on a single axis tracking system are used to generate electricity	Mature technologyRelatively low \$/kWh capex	Strongly seasonalLimited resource availability	 Commercially available Limited to areas of high solar resource 	• Solar technology increasing efficiency and lowering costs
Concentrated Solar Power (CSP)	Solar	25%	Mirrors are used to concentrate solar energy on a working fluid, which is used to transfer heat to a steam turbine	 Includes storage Firm capacity Relatively low \$/kWh 	Strongly seasonalLimited resource availabilityRelatively immature	 Commercially available Limited to areas of high solar resource Pilot scale 	• High temp steam turbines can reduce costs
Geothermal	Geothermal	72%	Underground geothermal energy is used to drive a steam turbine	 Relatively high capacity factor Firm capacity Mature technology 	Limited resource availability Relatively high \$/kWh capex	 Commercially available Limited to areas of high geothermal resource 	
Ocean Tidal	Tidal	20-35%	Tidal energy is used to drive an electric generator	Predictable resourceComplementary generation profile	Requires tidal estuary Relatively expensive per kWh Immature technology	Commercially available Limited to coastal areas Limited to tidal areas	
Ocean Wave	Wave	25-32%	Wave energy is used to drive an electric generator	Predictable resourceComplementary generation profile	 Requires coast access Relatively expensive per kWh Immature technology 	Commercially availableLimited to coastal areas	
Run-of-River Hydro	Hydropower	40-80%	Water flow is used to drive an electric generator	Relatively low \$/kWh capexFirm capacity	Community resistence Subject to rainfall	 Commercially available Limited to areas of high hydro potential 	
Reservoir Hydro	Hydropower	35-43%	Water is stored in dams and then released to drive an electric generator	 Relatively low \$/kWh capex Includes storage Firm capacity 	 Community resistance Subject to rainfall Subject to other uses, e.g. fish 	 Commercially available Limited to areas of high hydro potential 	
Waste-to- Energy	Waste	70%	Methane is captured from waste and used to drive a combustion turbine	 Relatively low \$/kWh cost Methane reduction boost Firm capacity 	Local emissions from combustion	 Commercially available Limited to areas with significant waste streams 	
Biomass	Biomass	50-60%	Methane is capured from biomass or biomass is burned directly to drive a combustion turbine	• Firm capacity	Local emissions from combustion	 Commercially available Limited to areas with significant biomass streams 	• Improvements in bio-digester technology increases efficiency and reduces cost

• CAC feedback: Are we missing any technologies, or does any of the key information need to be updated?

Item 8 – Carbon Neutral Task Group: Key Future Storage Technologies

Name	Cycle Time	Description	Round-trip Losses	Advantages	Disadvanages	Availability	Potential Breakthroughs	
Storage Techno	ologies							
Capacitors	Seconds	Capacitors used to rapidly charge and discharge small amounts of electricity directly	5%	Fastest response of any technologyMature technology	Relatively expensive per kWh Unable to store significant energy 10-20% losses per day	Widely available		
Flywheels	Seconds	Uses a flywheel to rapidly charge and discharge relatively small amounts of electricity using an electric generator	5%-50%	 Relative fast response times Mature technology	 Relatively large footprint Relatively expensive per kWh 20-50% losses over 2 hours 	Widely available		
Battery	Hours	Electrochemical reactions are used to store and discharge electricity directly	10%	 Relatively responsive Relatively low losses Mature technology 	 Relatively high cost per kWh Thermal runaway 	Widely available	 Metal air and liquid metal formulations may improve cost effectiveness 	
Flow	Hours	Stores electricity in two chemicals, which can be stored indefinitely	40%	 No standing losses if turned off Relatively safe 	 Unproven technology High parasitic losses while on Relatively high \$/kWh 	Commercially available Pilot scale		
CSP	Hours	Stores energy as heat in working fluid, which is then used to drive a heat recovery-based steam generator	1%	 Very low round trip losses Can be coupled with CSP Relatively low \$/kWh capex 	Unproven technologySafety of high operating temp	Commercially available Pilot scale	High temp steam turbine technology could increase efficiency, lower \$/kWh	
Hydrogen- Compression	Hours	Uses steel or carbon fiber based receiving vessels to store relatively small amounts of hydrogen	53%	 Mature technology Relatively compact footprint Relatively low \$/kWh capex 	 Amount of space required High round trip losses	Widely available	Material science could reduce cost	
Hydrogen-Salt Cavern	Weeks	Uses air compressors to store large amounts of hydrogen in salt caverns	42-55%	 Relatively low cost per kWh Mature technology	 Requires access to a salt cavern High losses Relatively slow response 	Limited availability of salt caverns		
Compressed Air Energy Storage (CAES)	Weeks	CAES stores electricity in underground formations including salt caverns and an expander to drive a turbine generator	42-55%	 Relatively low \$/kWh capex Mature technology 	 Requires access to a salt cavern High losses Relatively slow response 	Limited availability of salt caverns	 Isobaric systems potentially reduce volume by 77% 	
Hydrogen- Organics	Months	Uses chemical processes to store hydrogen, typically as amonia or methanol	59-89%	 Mature technology Relatively high energy density 	 Storage of volatile chemicals Relatively high losses Relatively high \$/kWh 	Widely available	High potential for cost reduction	
Pumped Hydro	Months	Pumps water into reservoirs for later use to drive water turbine generators	80%	 Mature technology Relatively low \$/kWh capex Relatively low standing losses 	Requires access to reservior Scale required Relatively slow response	Limited availability of reserviors		

• CAC feedback: Are we missing any technologies, or does any of the key information need to be updated?

yvonnehunterphotography.com

Valley Clean Energy CAC Meeting – Thursday, August 26, 2021 via video/teleconference

Item 9 – Discussion on possibility of restructuring CAC

Item 9 – Discussion: possibility of restructuring CAC

Option 1: No Change

- 12 Seats (3 seats from each of the 4 jurisdictions)
- Reappoint / Appoint from current applicant pool for Davis and Winters Class 3 seats
- Continue to actively advertise and solicit applicants to fill 2 vacancies: Woodland and unincorporated Yolo County

Item 9 – Discussion: possibility of restructuring CAC

Option 2: Addition of Member-at-Large appointment

- 12 Seats (3 seats from each of the 4 jurisdictions)
- Allows temporary appointment of Member-at-Large for vacancies greater than 90 days
- Includes 1 reappointment, 1 appointment, and continued recruitment for vacancies (unincorp. Yolo and Woodland)
- Member-at-Large:
 - A) is an applicant(s) from jurisdictions that have filled all available seats for their respective jurisdiction;
 - B) would be appointed for 1 year term and limited to 1 per jurisdiction; and,
 - C) would participate in task group and committee meetings as voting members until the 1 year term or the Class term expired.
- Member-at-Large terms limited to 1 per jurisdiction, i.e.

maximum of 4 seats for each jurisdiction to prevent majority representation

Item 9 – Discussion: possibility of restructuring CAC

Option 3: Modified Structure

- 8 seats (2 seats from each of the 4 jurisdictions), staggered terms
- Creation of 1 alternate from each jurisdiction (like Board structure)
- Alternates would be allowed to act in the absence of their jurisdiction seat: voting rights at CAC meetings. May participate in task groups and CAC meetings (without voting rights)
- Continue to actively advertise and solicit applicants to fill 2 vacancies: Woodland and unincorporated Yolo County
- Before adoption and implementation of Option 3, Option 1 in the interim
- Strategy for implementation development with Staff and CAC Ad Hoc Committee for future consideration

