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Executive Summary 
This report presents results of a load impact analysis of Leapfrog Power, Inc’s (Leap’s) aggregated 

Demand Response (DR) capabilities for residential and non-residential sectors. Leap is a DR aggregation 

company offering a market exchange for grid flexibility services. Specifically, Leap has a software 

platform that allows their customers to specify the conditions under which their resource is available in 

the wholesale market to be dispatched and deliver energy. Customers “bid in” their resources (i.e., set 

the price threshold at which they wish to be dispatched) and Leap triggers the customer DR controls 

when the threshold is reached.1 Leap customers are tracked at the SubLAP level and, in 2019, virtually all 

(98.5%) were dispatched through automated DR controls. 

During 2019, the year this report is based on, Leap called 26 test events that took place from April to 

November 2019 to establish an empirical record of their DR capacity. Their August test events 

dispatched all customers enrolled at the time at least once (only one test event was called after August 

and that event only included one large customer). They did not participate in any CAISO called events. 

This report is based on the data from those load reduction events, combined with Leap’s customer 

enrollment as of the end of 2019 and Leap’s enrollment forecast for future years. Leap’s resource has 

been growing quickly. By the end of 2019, the set of meters dispatched during the test events comprised 

just 52% of enrolled meters - customers Leap enrolled after August were not included in the test events. 

Leap customers with residential battery storage were also not included in these test events. CDA 

obtained data from Leap’s solar and storage partner to simulate test events for the residential battery 

loads and provide ex post estimates for use within the ex ante prediction. 

In this document we present: 

1. Ex post load impact estimates for the year 2019 (PY19) 

2. Ex ante prediction of Leap events for program years 2020-2030 

Within these analyses, we examined impacts across geography and by customer segments. This included 

findings for: 

● Local capacity areas (LCAs). There are ten California Independent System Operator (CAISO) 

LCAs2 in California, spanning a great deal of geographic/climatic variability: PG&E territory: 

Greater Bay, Greater Fresno, Humboldt, Kern, North Coast / North Bay, Sierra, Stockton; SCE 
territory:  Big Creek / Ventura, LA Basin; SDG&E territory: San Diego. The LCA analysis provides 

insights on the magnitude of available capacity from events in each geographic area.3 Ex post 

analysis included all LCAs for both residential and nonresidential sectors except for Kern (where 

only residential meters were available for ex post analysis) and San Diego (Leap had no 

customers who participated in events in San Diego in 2019, however, some of the residential 

battery sample were in SDG&E territory). The ex ante analysis included customers in all LCAs 

based on the Leap forecast. 

● Customer type: Leap customers provide resources from various loads in the nonresidential and 

residential sector. Nonresidential loads include pumping, air conditioning, electric vehicles, 

 
1 This is a Locational Marginal Price (LMP) price threshold at the Sub Load Aggregation Point (sub-LAP) level.  
2 See http://www.caiso.com/informed/Pages/StakeholderProcesses/LocalCapacityRequirementsProcess.aspx for 
more details on the CAISO local capacity requirements process. 
3 While the natural geography for DRAM resources is the sub-LAP, there were too few customers per sub-LAP for 
reliable estimates of ex post impact. Therefore, CDA analyzed data by LCA. 
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battery and thermal storage and other.4 Residential loads are from air conditioning and battery 

storage (connected to PV systems). This report covers all loads within these two customer types.  

All of the above categories inform our understanding of ex post results and are explanatory variables in 

our ex ante model. (The residential ex ante model was trained using sub-LAPs, not LCAs, but they 

directly correspond with one another. The nonresidential ex ante model was trained by individual 

meter).5  

The test events examined for this report each lasted 2 hours, with all event timing within the RA 

window, which extends from 4 pm to 9pm. In total, data from 26 events, spanning 18 days of 2019, was 

provided by Leap to CDA for evaluation. Nonresidential test events occurred from April to November 

while residential events occurred in June and August for air conditioning and simulated test events for 

residential batteries across May to December. Ex ante results are based on model-predicted event 

performance across the full RA window. 

Ex Post Load Impacts 
Leap obtains load impacts from both the nonresidential and the residential sectors. Nonresidential load 

impacts are from pumping, air conditioning, electric vehicles, battery storage (large and small storage), 

thermal storage, and other. Residential load impacts occur from air conditioning and battery storage 

(associated with PV systems). Leap added 48% of the customers present in its end-of-year portfolio after 

it had concluded its testing for 2019. Leap’s full end-of-2019 resource, using per-meter impacts from the 

52% of customers included in test events and enrollment as of the end of 2019, provides 30.5 MW. 

(Table 1) 

Table 1. Ex post impacts for Leap’s 2019 full resource 

Sector Loads 

Ex Post Mean 
Event 
Temperature 
(F) 

Ex Post 
Mean 
Impact 
(kW) 

Ex Post 
Mean 
Baseline 
(kW) 

Ex Post 
Percent 
Impact 
(%) 

Full 
Resource 
Enrollment 
Count 
(meters) 

Full 
Resource 
Total Impact 
(MW) 

Std. Err 
(MW) 

90% Conf. 
Interval (low, 
high) (MW) 

Nonresidential 82.5 31.3 93.5 34 848 26.55 4.02 (19.94. 33.16) 

Residential 86.4 0.5 1.6 33 7,098 3.9 0.16 (3.63, 4.16) 
Total 85.2 3.8 29.6 13 7,946 30.45 1.32 (28.27, 32.62) 

Table 1 and many of the other tables and figures in this report include 90% confidence intervals. These 

confidence intervals are calculated separately for each sector and the total. Confidence intervals are a 

statistical tool that help to describe uncertainty. If the analysis were repeated many times on new data, 

then (for a 90% confidence interval) the confidence interval should include the “true” value in 90% of 

the repetitions. Confidence intervals do not describe the probability that the “true” value is in a 

particular interval. This limitation of confidence intervals means that while they have substantial value 

 
4 “Other” sites are light manufacturing and cold storage facilities. 
5 Leap had no customers in the SDG&E territory in 2019 and so is not included in any ex post analyses except for 
the simulated residential battery estimates. However, Leap has 2020 DRAM obligations and has been enrolling 
customers in the SDG&E LCA area, so the report includes ex ante analyses for this LCA.  
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as measures of uncertainty, they can be easily misinterpreted.6 We include a deeper discussion of the 

sources of uncertainty in ex post and ex ante estimates in later sections of the report. 

One product of the ex post analysis is a ‘table generator’ spreadsheet that allows the user to select 

different combinations of events, utility area, LCA and customer type. The ex post table generator 

includes calculations of “Typical” events. “Typical” estimates are defined by the Load Impact Protocol 8 

as averages across events. A “typical” event average is useful when the entire population is dispatched 

for an event. However, Leap’s customers are not dispatched as a full resource (e.g., Leap did not 

dispatch all customers for an event), so the variation between events is extremely large because entirely 

different groups of customer meters were dispatched for many test events. Leap dispatched their 

existing customers in small batches across their test events, but no single event could be said to 

represent their “Full Resource.” For example, some events had 1 participant, while others had over 

6,000, but did not feature contributions from all load types. Therefore, the “Typical Event” summary, 

which is specified and required by the Load Impact Protocols, is not representative of Leap’s full 

resource. For this reason, we added another summarization within the report of Leap’s ex post “Full 

Resource” results. This value is the estimate of what the aggregate impact would have been if all 

customers were dispatched at once. The “Full Resource” estimate (shown in Table 1) scales average ex 

post per-meter impacts by the number of meters enrolled at the end of 2019. 

Below are evaluation results for 2019 test events by sector with each sector showing average impacts 

per-customer and by local capacity area (LCA). 

Nonresidential 

The ex post per-meter impact values that flow into the ex ante impacts (and therefore the qualifying 

capacity values) are the impacts by load type and location. The majority of nonresidential loads are not 

temperature dependent, so load type is more of an impact determinant than weather. 

The average ex post per-meter impact in 2019 was 31.1 kW with moderate variation across load type. 

Figure 1 shows nonresidential per-meter impacts by load type (regardless of geographic location). The 

average is shown by a circle and the lines are the 90% confidence levels of the estimated impact. Meters 

with an “other” load (cold storage and small industrial sites) bring in the highest average impact. Electric 

vehicle charging shows a wide range of potential impacts, including some negative impacts. During 2019 

test events, commercial electric vehicle chargers often dropped out of events after the first hour, which 

has been the practice under DRAM rules, and is most likely the cause for the confidence interval for two-

hour events to cross zero.7 Leap indicates that they have discussed this issue with their partner and that 

they are “ensuring that our partners are committed and incentivized to perform across entire test and 

event windows, and we therefore expect performance to increase for multi-hour tests and events in 

2020 and beyond.” Air conditioning, pumping, small commercial battery and thermal storage loads all 

brought in similar average impacts. 

 
6 Greenland, S., Senn, S.J., Rothman, K.J. et al. Statistical tests, P values, confidence intervals, and power: a guide to 
misinterpretations. Eur J Epidemiol 31, 337–350 (2016). https://doi.org/10.1007/s10654-016-0149-3 
 
7 Leap indicated that one of their electric vehicle partners optimized for one-hour test events as the DRAM 
contract for Generic capacity stipulated that performance would be calculated for the highest hour.  
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Figure 1. Nonresidential ex post per-meter impacts (average of April-November) by load type 

  
Circles are the average across all participant meters in the monthly event. Lines are the 90% confidence intervals. 

Figure 2. shows the average nonresidential ex post impacts by LCA. Again, the average is shown by a 

circle and the lines are the 90% confidence levels of the estimated impact. Impacts are a function of the 

load type in each area. Stockton, with a negative average load impact, included only electric vehicle 

loads. Greater Bay, with the highest average impact, has a high percentage of electric vehicle load but 

also included thermal storage and an “other” load type. The relatively small confidence interval on the 

“All” LCA category is the result of the evaluated impact estimates becoming more certain as more 

customers are averaged together. 
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Figure 2. Nonresidential ex post average impacts by location (Local Capacity Area) 

  
 Circles are the average across all meters in the monthly event. Lines are the 90% confidence intervals. 

Residential 

The ex post per-meter impact values that flow into the ex ante impacts (and therefore the qualifying 

capacity values) are driven by the impacts by temperature (since most modeled residential loads are 

from air conditioning) and by location. The average air conditioner load impact (0.55 kWh/hr) is about 

twice the average residential battery load impact (0.27 kWh/hr). The large confidence interval for 

residential battery storage is largely a function of uncertainties in baseline load estimates for the small 

number of customers contributing to the calculation (Figure 3). 
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Figure 3. Residential average impacts by load type for all test events 

 

Circles are the average across all meters in the monthly event. Lines are the 90% confidence intervals. 

Figure 4 shows the average ex post residential impacts by LCA. Because the majority of ex post impacts 

come from air conditioning, the impacts are a function of temperature. Greater Bay has mild weather 

and so shows low average impacts. Kern and Greater Fresno, on the other hand, have the two highest 

average impacts at least partially due to warmer weather. Notably, Kern participants also have much 

higher baseline usage than those enrolled in the other LCAs, which increases impacts. 
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Figure 4. Residential ex post average impacts by location (Local Capacity Area) 

 

Circles are the average across all meters in the monthly event. Lines are the 90% confidence intervals. 

Ex Ante Load Impacts 
The ex post analyses results, shown above, quantify what happened in 2019. This section shows results 

for the ex ante forecasts and quantifies future DR resources from Leap.  

Ex ante load impact forecasts predict the load impact that would occur in standard event times and 

conditions for a total of four hypothetical weather-years. For this report, predictions are made for the 

peak day of each month for two standard weather years – corresponding to conditions that are 

expected to lead to peak electric load in either one out of every two years or one out of every ten years, 

on average. There is a slight difference in the conditions associated with system-wide peak load for the 

California Independent System Operator (CAISO) and the peak loads of individual Investor-Owned 

Utilities (IOUs). Combining the two peaking conditions with the two types of weather year leads to four 

sets of ex ante weather data. 

CDA predicted ex ante impacts through statistical models that predict the load impact per meter for 

different customers (i.e., different sectors and load types). The models were fit to data from calendar 

year 2019 and used to predict the load impact per meter for the standard weather conditions 

mentioned above, for the projected mix of meters by category that is forecast for future years. The 

predicted load impact per meter multiplied by the projected number of meters equals the projected 

aggregate load impact. Additionally, because Leap is an organization with plans for significant capacity 

growth during the forecast period, our evaluation also includes a low, medium, and high scenarios from 

Leap’s participation forecast. 

A major product of the ex ante analysis is a ‘table generator’ – a spreadsheet – that allows the user to 

select a forecast year and a set of weather conditions and see estimates of load impact by hour, in each 

LCA separately or the total of all LCAs.  
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Forecast Growth 

Leap expects to grow quickly over the next few years. The projected growth in enrollment varies by 

SubLAP and is based upon both the data from Leap’s enrollments to date, as well as Leap’s forward-

looking partner pipeline and planned recruitment efforts. The result is a projected rapid increase in 

aggregate load impact. (Appendix B describes Leap’s forecast.)  

CDA obtained Leap’s forecast in the form of the aggregate load impact during the resource adequacy 

(RA) time period for a typical weather year and for a low, medium, and high impact forecast. Figure 5 

shows Leap’s forecasted aggregate load impacts (i.e., the qualifying capacity values) for 2020-2024 for 

the medium load forecast by load type. As can be seen below, Leap forecasts electric vehicles, 

residential AC and residential battery impacts to make up a large percent of their impacts each year, 

with larger absolute values over time as well. 

Figure 5 Leap’s forecast aggregate load impact, by year and load type (medium forecast) 

 

Figure 6 shows the same Leap forecast, but this time by LCA. Leap forecasts much of their impacts to 

occur in Greater Bay and LA Basin LCAs. 
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Figure 6 Leap’s forecast aggregate load impact, by year and LCA (medium forecast) 

 

Leap Combined Load Impacts 

Leap provides a combined DR resource across both nonresidential and residential sectors. Figure 7 and 

Figure 8 show the combined nonresidential and residential predicted impacts for the medium 

enrollment forecast (i.e., the full Leap predicted impacts). Figure 7 reflects the growth in capacity that 

Leap forecasts between 2020 and 2023, with August 2020 obtaining slightly over 100 MW impact and 

August 2023 obtaining over 600 MW of impact. Figure 8 shows the increasing load impacts by LCA, with 

PG&E’s Bay Area having the highest predicted impacts over time. 
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Figure 7. Combined sector predicted impacts by month and year (medium forecast) 

(nonresidential and residential resources combined) 
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Figure 8. Combined sector predicted impacts by LCA and year (medium forecast) 

(nonresidential and residential resources combined) 

 

 

Recommendations  
Based on our evaluation of the 2019 dispatch of Leap’s DR resource, we provide the following 

recommendations to Leap: 

● Call some longer-duration and full-resource events that can provide statistical support for full-

resource and 4-hour+ RA window events that Qualifying Capacity numbers are based upon. 

● Call events during more months of the year to gather information about seasonality and 

weather influences on event impacts. 

Recommendations for future evaluators: 

● Investigate baselining and comparison group methodologies for estimating event impacts that 

best characterize impacts for groups with few participants, varied events, and noisy baselines. 

This could include Leap dispatching at least a subset of their future events with true randomized 

controls. 

● Study two load types where Leap forecast high future impacts.  
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o Closely monitor the EV impacts during any future test events to ensure Leap is obtaining 

an event response that is consistent across all event hours. 

o Evaluate future test events on residential batteries to determine if the simulated event 

impacts within the ex post analysis are comparable to actual events. Compare not only 

the average impacts, but the impacts over the test period. 

● Consider how best to apply LIPs so that they align with the needs of third party and emerging 

program evaluation. Most notably, the “Typical Event” requirement of Protocol 8 is not 

appropriate to characterize the full resource when all participants are not dispatched for all 

events. Also consider how best to characterize a resource that is growing and/or changing 

rapidly. 

● Investigate ways to characterize and, where possible, measure sources of uncertainty, such as 

between customer variation, variation in event participation, and variation in load and customer 

types. 

 



 

2019 Leap Demand Response Results                                             13 

 

Introduction to the 2019 Leap Resource 
Leap, founded in 2017, won capacity through the California Demand Response Auction Mechanism 

(DRAM) in 2018, and became an active Scheduling Coordinator and Demand Response Participant in the 

CAISO system in 2019. Leap delivered Resource Adequacy (RA) to PG&E and SCE in 2019 and has 

expanded to deliver RA to SDG&E in 2020. 

Participants 

Leap is continually recruiting new customers and refining its methods and strategies for dispatching 

events. (Leap recruited 3838 meters after the 2019 test events completed in August, representing 48% 

of meters). In 2019, Leap obtained load impacts for both the nonresidential and the residential sectors. 

Nonresidential load impacts were from pumping, air conditioning, electric vehicles, battery storage 

(large and small), thermal storage, and other (light manufacturing and cold storage facilities). Residential 

load impacts occur from air conditioning and battery storage (associated with a PV system).  

Events 

In 2019, Leap called test events only. CDA included 26 test events for nonresidential customers and 16 test 
events for residential customers in the ex post analyses. Table 2 shows that most events occurred between 

May and August. 8 

Table 2. Count of events and participants by sector and month 

Sector Month Event Count 
Average Participant 

Meter Count 

Nonresidential 

April 1 233 
May 3 123 
June 6 116 

August 15 58 
November 1 1 

Residential 
June 6 336 

August 10 874 

All events lasted two hours and occurred between the hours of 4 to 6 PM, 5 to 7 PM, or 7 to 9 PM. Most 

events were called from 4 PM to 6 PM. (Table 3) 

Table 3. Count of events by time of day and sector 

Event Period 

Count of 
Nonresidential 

Events 

Count of 
Residential 

Events 
4 PM to 6 PM 15 10 
5 PM to 7 PM 5 4 
7 PM to 9 PM 6 2 

 
8 Residential battery storage participants were not included in the test events because they were added after the 
test events. CDA simulated impacts for this category based on data from Leap’s solar and storage partner (see 
section on “Residential Battery Storage” within the ex post impact analysis methods). 
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LCA 
This report presents results in terms of LCAs. There are 10 LCAs, as well as a group of customers that do 

not fall into any LCAs. Table 4 shows the count of Leap customers and meters by LCA in 2019. Not all 

customers participated in test events due to being recruited after Leap had called the tests. 

Table 4. Count of customers and meters active in 2019 by IOU and LCA 

IOU LCA 
Nonresidential  Residential 

Customers Meters  Customers Meters 

PG&E 

Greater Bay <16 66  4,433 4,593 
Greater Fresno <15 176  606 620 
Kern 0 0  201 207 
North Coast / North Bay <15 15  306 318 
Sierra <15 <15  469 473 
Stockton <15 <15  165 168 
Unspecified Local Area <15 55  600 617 

San Diego San Diego 0 0  0 0 

SCE 
Big Creek / Ventura <15 122  <100 <100 
LA Basin 24 384  <100 <100 
Unspecified Local Area <15 <15  0 0 

Municipal Utility Unspecified Local Area <15 <15  <100 <100 
All  86 848  6,880 7,098 

Note: Customer and meter counts are the full resource counts as of the end of 2019. 

Key concepts and decisions 
This section marshals in one place evaluation-relevant details of Leap’s resource and the circumstances 

of this evaluation that have required careful thought and/or contributed substantially to the outcomes 

or interpretations presented in this report. The information and caveats presented in this section are 

necessary to understand our methods and results. 

Heterogeneous resource 
Leap aggregates across customer types (residential, commercial, agricultural, and light industrial) in a 

manner that no IOU DR program does. Their resource, and therefore their evaluation is a bit like several 

more narrowly scoped DR resources rolled into one. For this evaluation, we’ve drawn upon experience 

and prior evaluations in residential, commercial, agricultural, and industrial categories. This 

heterogeneity has been factored into the methods we’ve employed to measure impacts. It is 

meaningless to compare across residential AC and agricultural pumping, for example, and they cannot 

be combined in models. Different categories of programs have widely differing sample sizes and 

precedent for measurement and reporting, where capacity bidding programs, for example, are often 

heavily redacted due to the very small number of large customers participating. This heterogeneity is 

notably on display in the ex ante forecast, which was produced in terms of capacity relative to 2019 

rather than enrolled customer counts to provide greater comparability of resource capacity across load 

types. 
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Full resource called incrementally 
Leap’s test events were designed to call virtually all customers who had enrolled by August (52% of their 

customers participated in test events, because Leap enrolled many customers after August), but they 

did not attempt a “full resource” test where all customers were called at once. For this reason, the 

aggregate impacts of individual ex post events (or the average aggregate impact across events) are well 

below the full capacity of their resource, if it were to be called all at once. Combined with the written 

requirement in the LIPs that “Typical event” impacts and participation should be reported for ex post as 

the average across events, the result is a very low reported “Typical” event aggregate performance and 

participation. To capture something closer to the full resource potential, we define “Full resource event” 

impacts and participation to be the average across all test event participants multiplied by the number 

of meters enrolled at the end of 2019. This metric is not corrected for weather, which is done in ex ante, 

but we note that Leap did not call events on systematically hot days and their average event 

temperature is slightly below the CAISO 1 in 2 temperature for ex ante. 

Day matching baselines vs. control groups 
The results in this evaluation are based on the use of an X of 10 baseline. Our methods do not include a 

matched non-participant comparison group since, as a non-utility, Leap does not have access to utility 

account data for non-customers. 

For residential air conditioning ex post impact estimates, where customers are relatively similar, we 

adjust the X of 10 baseline using customers who are enrolled but were not dispatched for a given event 

as a comparison group since those customers are quite similar to those who were dispatched. For 

nonresidential ex post impacts, using non-participating customers is not helpful because there is so 

much variation in both electricity consumption and event response between customers. For all 

residential and nonresidential test day participants, we assess both random error and bias by applying 

models to non-event days and seeing how well the baseline matches actual electricity consumption (See 

Ex Post Model sections for graphics that show random error and bias for all tested models). 

We are recommending that Leap look into dispatching at least a subset of their future events with true 

randomized controls. This would help to solve the problem of how to model impacts because the 

methodology for estimating impacts from randomized control trials is well established statistical 

practice, and the impact estimates should be unbiased on average. 

4-hour and multi-day ex-ante events 
To qualify for RA, the Commission requires a DR resource to be able to operate for a minimum of four 

hours per day during the 5-hour RA window for three consecutive days.9 In this evaluation, we have 

mainly 2-hour events to work with. There is no empirical basis to estimate the "decay" of resource 

performance over events of longer duration. The Leap resource is a combination of load shifts and 

device dispatch, where the devices include thermostats, batteries, and other controllable loads. Some 

strategies, like deferring loads, can easily shift loads fully out of the 5-hour RA window, while others, like 

thermostat setbacks, most likely cannot defer all cooling for a 4-hour event. Because Leap has a highly 

heterogeneous resource, there is no hard and fast rule or precedent for how their performance by load 

type is expected to degrade over long events. 

 
9 See Decision 11-06-022 p53 http://docs.cpuc.ca.gov/PublishedDocs/WORD_PDF/FINAL_DECISION/138375.PDF 
The RA window is five hours long (i.e., from hour starting 4 PM to hour ending 9 PM) 
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We have determined that the best course of action for air conditioning loads is to use "hour of event" 

degradation factors derived from the few DR program evaluations that have documented it. Southern 

California Edison (SCE) determined the relationship between load impact of a one-hour event and the 

impact in subsequent hours of a multi-hour event for the Summer Discount Plan and Smart Energy 

Programs, in both May and August of PY18. For residential air conditioning, we take the average of the 

SCE May and August results for each event hour and applied this decay curve to the predictions from the 

ex ante model. By hour, the factors are 1, 0.96, 0.70, 0.63, 0.61. For example, the predicted load impact 

for the fourth hour of an event is 63% of the prediction for a one-hour event at the same time of day 

and the same outdoor temperature. Since 2019 events were all two hours long, providing empirical 

estimates for the first two hours, we shifted the factors to the next hour, scaling a four-hour event using 

the factors: 1, 1, 0.96, 0.70. 

For residential batteries, CDA modeled the full five hours of the RA window to directly estimate impact 

for each hour. For residential AC, CDA modeled a four-hour event during the first four hours of the five-

hour RA window. 

In the case of the nonresidential loads other than-air conditioning, most of these are either shifting load 

or large enough systems that they can support 4- or 5-hour events without degradation. For 

nonresidential air conditioning, we took results from the 2016 Capacity Bidding Program evaluation 

which included multiple 4-hour events. We calculated the overall mean empirical degradation across 

those events to estimate factors for a four-hour event of 1, 0.86, 0.78, 0.74. Since 2019 events were all 

two hours long, providing empirical estimates for the first two hours, we shifted the factors to the next 

hour, scaling a four-hour event using the factors: 1, 1, 0.86, 0.78. 

For all nonresidential load types, we estimated impacts for a four-hour event in the first four out of the 

five hours of the RA window. 

Key Research Questions and Study Methods 
Key Research Questions 
The research: 

1. Estimates the ex post load impacts for the Leap demand response resources for PY2019 

2. Estimates the ex ante predicted load impacts for the Leap demand response resources for years 

2020-2030 

3. Looks at LCA effects  

4. Looks at the impacts of weather and time of year 

Limits to our analysis included: 

● Lack of nonparticipant data – Some LIP calculations that are often part of a utility DR evaluation 

(such as obtaining a counterfactual estimate using matched nonparticipant data) were not 

possible because Leap, as a third-party vendor, does not have access to utility nonparticipant 

data. 

● Lack of past participation data – The LIPs require comparison to previous years’ results, but this 

is the first year for an evaluation of Leap’s resource. 
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All analysis in this report was performed using R software10 with data.table11 and tidyverse12 packages. 

Ex Post Impact Analysis Methods 
For the ex post analysis, we estimated load impacts and baseline loads (also known as ‘reference loads’) 

for participants on event days using 10-of-10 day-matching models for all meters that participated in 

events during 2019.13 We simulated impacts from residential battery systems using 15 minute data and 

information from Leap describing how they operate this load during non-event and event days. 

Residential and nonresidential meters use electricity and perform quite differently in response to DR 

events, so we estimate ex post impacts separately and used different models for these groups. Table 5 

shows the models that we used for the ex post analysis.  

Table 5. Final ex post models 

Customer Type Final Model 
Nonresidential 10-of-10 day matching with no adjustment 
Residential AC 10-of-10 day matching with Difference-in-Difference adjustment 
Residential Battery Simulation 

We tested a variety of models before selecting the final models for this ex post analysis. We wanted to 

select models that have minimal bias and low variance determined by comparing a variety of day 

matching and regression models’ performance on non-event days. The models we tested are listed in 

Table 6, described in detail after Table 6, and summarized in Table 8.  

Table 6. Ex post models tested 

Customer Type Models Tested 

Nonresidential 

5-of-10 centered  
10-of-10 with no adjustment 
CAISO 5-of-10 with same day adjustment 
CAISO 10-of-10 with same day adjustment 

Residential 

5-of-10 centered 
10-of-10 with no adjustment 
10-of-10 with Difference-in-Difference adjustment 
5-of 10 centered with Difference-in-Difference adjustment 
Panel Regression 

 
10 R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https://www.R-project.org/. 
11 Matt Dowle and Arun Srinivasan (2019). data.table: Extension of `data.frame`. R package version 1.12.8. 
https://CRAN.R-project.org/package=data.table 
12 Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, 
Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan 
D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. 
doi: 10.21105/joss.01686.  
13 All analyses were performed at the meter level, not customer level, as Leap can control dispatch at the meter 
level. 
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Model Descriptions 

Centered 5-of-10 and Unadjusted 10-of-10 

A standard industry approach for estimating baselines is the ‘X-of-10’ method, often ’10-in-10’ or ‘5-in-

10’.  A standard X-of-10 model assumes the baseline load for a customer is the mean (average) load of 

the X highest-load days out of the 10 non-holiday weekdays prior to the event day (X being equal to 5 or 

10). More generally, this approach can sample from any set of days (before or after the event) 

understood to potentially share similar conditions with event days. Centered X-of-10 uses the X days 

where load is closest to the event day during a set of non-event hours. 

To calculate the 5-of-10 and 10-of-10 day-matching models, we first removed all weekends, NERC 

holidays and Public Safety Power Shutoff (PSPS) days from the data. Then, separately for each meter on 

each day, we selected the 10 days prior to the event day. For 10-of-10, the mean load for each hour on 

the selected non-event days is the unadjusted 10-of-10 baseline. For 5-of-10, we selected 5 of the 10 

days where the average load from 11 am to 3 pm is closest to the event day load in the same time 

period. The average hourly load across the selected 5 days is the centered 5-of-10 baseline. 

CAISO 5-of-10 and 10-of-10 with same day adjustments 

For the CAISO 5-of-10 and 10-of-10 day-matching models, we followed the CAISO day matching 

examples from CAISO’s website.14 These models first remove all weekends, NERC holidays and PSPS 

days, then select the 10 days prior to the event day. For 10-of-10, the mean load for each hour on the 

selected non-event days is the unadjusted 10-of-10 baseline. For 5-of-10, we selected 5 of the 10 days 

where the average load from 11 am to 3 pm is closest to the event day load in the same time period. 

The average hourly load across the selected 5 days is the unadjusted 5-of-10 baseline. Next, we adjust 

each of the baselines using average load on selected non-event hours. For the CAISO 10-of-10, these are 

the three hours starting four hours before the event, and for CAISO 5-of-10, these are the two hours 

starting four hours before the event and the two hours starting two hours after the event. Finally, we 

multiply the unadjusted X-of-10 by the ratio of the mean load during the adjustment hours on the non-

event days, and the mean load during the adjustment hours on the event day. If the ratio is outside of 

the interval [0.8, 1.2] for 10-of-10 or [0.71, 1.4] for the 5-of-10, we use the limit, rather than the actual 

ratio in the adjustment. 

Centered 5-of-10 and 10-of-10 with Difference-in-Difference Adjustment 

We use Difference-in-Difference (DID) models for residential AC customers because they draw on meter 

data from nonparticipating in addition to participating meter data. These models take advantage of the 

fact that only a subset of meters were dispatched in each event, so we are able to use information from 

event and non-event day electricity consumption from all customers, not just those who were 

dispatched for a given event. In this way, they use substantially more available information than most 

same-day adjustment models that only use data from the customer being measured.  

The DID models work on aggregated data. Instead of a same day adjustment, we use a DID calculation 

that calculates event day impacts using both nonparticipating meter loads and the selected 5 or 10 days. 

To calculate the centered 5-of-10 and 10-of-10 DID models, we use nonparticipating load data during 

event days to separately adjust each hour. For a given event in a given SubLAP, we averaged the load for 

each hour for participants on the baseline days and on the event day, and for non-participants on the 

baseline days and on the event day, yielding 4 averages for each hour. For each hour of each event day, 

 
14 CAISO day-matching example workbook: http://www.caiso.com/Documents/Example-DayMatchWorkbook.xlsx  
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we calculate the impact as the difference of participating meter event day average and the participating 

meter non-event day average and then subtract the difference of nonparticipating meter event day 

average and nonparticipating meter non-event day average. 

Panel Regression 

Panel regression uses meter data for all enrolled meters on event days and comparison days to estimate 

impacts for residential sites. We do not use panel regression models for nonresidential sites because 

electricity consumption across nonresidential meters is much more variable than for residential meters. 

The CDA team identified a set of ‘comparison days’ for each event with weather conditions comparable 

to each event day by matching hourly temperatures from non-event to event days using Euclidean 

distance matching. These days are distinct from the X-of-10 days selected by the day matching models. 

We use some of the comparison days in the regression models and others for calculating errors, as 

described in the non-event day model section. 

Regression-based impact estimates and reference loads use three different models, one for each of the 

event start times (16:00, 17:00, and 19:00). The input data (the same for each of the three models) was 

designed to be run as a panel regression with data for the sub-group of customers whose load impact is 

to be estimated. These variables inform the regression model: 

Table 7. Data columns involved in panel estimation of hourly load impacts 

Data column Explanation 

kWh 
The total kWh consumption for the hour. This is the variable on the left-hand side of the 
regression equation to be explained by all the other factors (i.e., it is the dependent variable 
while all other data shown below are the independent variables). 

date Date of the electricity consumption. The dates in one panel will include all event days with 
events starting the same hour (16:00, 17:00, and 19:00) and all comparison days. 

meter_id The anonymized unique identifier of the meter each reading belongs to. The meter_ids in a 
panel will include all the event participants (the cases) and all of their controls. 

hour 
Hour of day of the electricity consumption indexed to 1 through 24, with 1 spanning midnight 
to 1am and so on. The panel will have been filtered to a single hour of day prior to the 
estimation of the load impacts for that hour. 

event Indicator that is 1 if the reading is from an event day or 0 if the date is a comparison day. 

cdh70 

“Cooling Degree-hours”. The total number of degrees by which the average temperature for 
the date and hour exceeds 70 F at the nearest weather station to each customer. This is used 
to quantify the air conditioning (and other temperature sensitive load) contribution to the load 
data. The common choice is 65 F, but we tested 65, 70 and 75, and found that 70 leads to 
substantially improved model fit.  

late_eve_load Average electricity consumption from 10pm to midnight, added to the model to allow it to 
perform a same day correction that recalibrates impacts to near zero late in the evening. 

morning_load 
Average electricity consumption from 7am to noon. We include this in the model to help 
adjust for day to day differences in energy consumption that can occur due to several hot days 
in a row.  

night_temp Early morning average outdoor temperature from midnight to 6am, added to the model to 
help adjust for differences in overnight temperatures. 

We also tested several other variables, including maximum temperature, day of week, and early 

afternoon load, but found that the addition of these variables did not improve model fit, so they are not 

included in the regression model.  
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In R’s formula notation, all three panel regression models all have the same formula: 

Equation 1: kWh ~ event + hour + cdh70 + late_eve_load + morning_load 
+ night_temp + event:hour + event:cdh70 + hour:cdh70 + 
event:hour:cdh70 + late_eve_load:cdh70 + morning_load:cdh70 | meter_id 

This means that the energy consumed for a given hour (kWh) is explained by a regression model that 

first converts each meter id to variation around its mean electricity consumption, then estimates 

coefficients for each of the listed variables and interactions (as well as an intercept term, which is 

implicit in R’s notation). Because our panel data set spans readings from many customers days, the fits 

apply to the average outcome across all modeled customers. 

With this regression model, we are effectively implementing a baseline calculation that can adjust for 

outside temperature and make corrections to ensure that event impacts start near zero prior to each 

event. The load impact term is the event coefficient and interaction that include the event variable, 

corresponding to the difference in consumption seen during event days, compared to what would have 

happened if there were no event, after adjusting for weather and overnight temperature, morning load, 

and late evening load. 

From this model, the baseline load on an event day is determined by using the model to make a 

prediction using the event-day values of all variables but setting event = 0. 

The table on the next page summarizes each model based on the number of days in the baseline, choice 

of baseline days, hours used to choose baseline and any adjustments. 
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Model Summary 

Table 8. Summary of models tested in the Leap ex post analysis 

Model Days in baseline load Choice of baseline days Hours used to choose 
baseline days 

Adjustment 

5-of-10 centered Average load of the 5 closest 
load days out of 10 non-
holiday or PSPS weekdays 
prior to the event 

Has similar conditions with event 
days and uses the closest 5 days 
of the 10 before the event day 

11 AM to 3 PM None 
5-of-10 centered with 
DID adjustment 

Adjust using DID on selected non-event days and for 
non-participants 

10-of-10 with no 
adjustment 

Average load of the 10 non-
holiday or PSPS weekdays 
prior to the event 

Has similar conditions with event 
days 

NA None 

10-of-10 with DID 
adjustment 

Adjust using DID on selected non-event days and for 
non-participants 

CAISO 5-of-10 with same 
day adjustment 

Average load for 5 highest of 
the 10 non-holiday or PSPS 
weekdays prior to the event 

The 5 days out of the 10 day 
before the event with similar 
conditions to event days 

11 AM to 3 PM Adjust using the average load on non-event hours 
using average estimated from 4 hours (2 hours 
before and after the event) with a 2-hour gap 
around the event, limited to 0.71 or 1.4 (See Figure 
9) 

CAISO 10-of-10 with 
same day adjustment 

Average load for the 10 non-
holiday or PSPS weekdays 
prior to the event 

The 10 days before the event NA Adjust using the average load on non-event hours. 
Average estimated from 3 hours before the event 
with a 1-hour gap before the event, limited to 0.8 or 
1.2 (See Figure 10) 

Panel Regression Same days as event, uses 
weather matched comparison 
days 

Days with matching temperature 
profiles 

Comparison days are 
selected based on 
temperature profile 

No adjustment needed. Impacts based on difference 
in meters that were participating in an event and 
those that were not 

Figure 9. Hours used to adjust baseline for CAISO 5-of-10 Model shown in green 

 

Figure 10. Hours used to adjust baseline for CAISO 10-of-10 Model shown in green 
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Errors and Validity 

X-of-10 baselines do not automatically generate uncertainty (aka error) estimates for their values. 
Regression models applied to time series data like that used in this analysis do report error metrics, but 
these are often under-estimates since regression models use only the data provided to estimate both 
regression parameters and errors. This is an important limitation, so we estimated errors for all 
approaches using out-of-sample non-event day models. 

There are three important sources of errors between a model and the phenomena it is trying to capture: 
intrinsic variation, model error, and prediction error.  

Intrinsic variation comes from the fact that data, especially whole building electricity data in this work, 
can vary for reasons unrelated to the driving forces that determine event savings. This additional 
variability is called ‘statistical noise’, and it can interfere with the ability to quantify the effect of a 
demand response event. We address this error in our models by including non-event day information in 
the models and adjusting for weather through comparison day selection and regression models. The 
wide range of load reduction capacities among Leap’s nonresidential customers is one major source of 
intrinsic variation that leads to wider confidence intervals than for their more homogenous group of 
residential customers. 

Model errors have to do with the structure of the model and the choices and assumptions of the 
modeler. For instance, the regression equation discussed above linearly adjusts mean electric load at a 
given time of day for outdoor temperature (above a reference temperature such as 65 F) and other 
factors, but in fact perfect linearity is very unlikely.  

Prediction errors come from the fact that it is impossible to perfectly predict the future or a 
counterfactual (something that did not actually happen but that we use to measure impact). Baselines 
are a type of counterfactual, and it is only possible to compare the baselines generated by a model 
against meters that were not dispatched or against the dispatched meters’ non-event day usage. On 
average, if the non-dispatched meters use energy similarly to dispatched meters, checking against non-
dispatched meters’ energy usage and dispatched meters’ usage on non-event days should reveal the 
random error and bias in the baseline prediction. This is the reason we use difference-in-differences to 
help reduce, but not remove, bias and random error.  

Validity is generally broken into discussions of internal and external validity.  

● An analysis is internally valid if the estimates are representative for the specific group being 
studied, we evaluate this by assessing bias. There are discussions of bias throughout this report, 
and we have endeavored to keep bias to a minimum. (See Figure 11 and Figure 12 for graphics 
of the bias we considered across multiple ex post models.) 

● An analysis is externally valid if the estimates are representative of a larger outside population. 
In this case, external validity only applies to the ex ante analysis. The current participants are 
not a random sample of future participants, so it is not possible to be sure that the results are 
perfectly representative. We have used best evaluation practice, Bayesian models and careful 
assessments of error in the ex ante analysis to ameliorate this issue as best as possible. 

Non-event-day models 

To determine the statistical distribution of errors – also known as bias and variance – we take advantage 
of the fact that the load impact is zero (by definition) on days when there is no event. There can be no 



 

2019 Leap Demand Response Results                                             23 

 

load impact if there is no event.15 Our approach to error estimates is to run the event models on non-
event (comparison days) days from the same participants used to evaluate event days. By definition, all 
deviations from zero impact on comparison days are errors so this gives us the errors for every hour of 
the day, for each comparison day. We thus obtain a statistical distribution of errors for each hour of the 
day and calculate the bias (as deviation from 0) and variation (as RMSE) and apply these to the 
corresponding event day. 

Nonresidential Ex Post Impact Analysis 

For the nonresidential ex post analysis, we estimated load impacts and reference loads for participants 
on event days compared to similar non-event days (comparison days) using centered 5-of-10, 
unadjusted 10-of-10, CAISO 5-of-10 and CAISO 10-of-10. For each of these models, we estimated load 
impacts for each event, and for sub-groups, including IOU and LCA.16  

We estimated average reference loads and load impacts (both with uncertainties) and tabulated meter 
count weighted temperatures for each hour of each event day for every sub-group modeled to report in 
quantitative deliverables. 

These are the steps we took to arrive at our ex post estimates for nonresidential participants: 

(1) Identify impact model input data: Assemble participant meter data associated with the sub-
group(s) of customers whose impacts are to be modeled for event days and comparison days. 

(2) Run event models: Run the X-of-10 calculations to estimate the load impact on the event days. 
Also estimate the load impact on 15 comparison days prior to the event. 

(3) Estimate errors: Estimate model errors by running our event models on all comparison days 
(days without events). The correct answer for these non-events is zero impact, so any deviations 
from zero are taken as empirical model errors. 

(4) Run and store estimates for every customer sub-group: Repeat the basic prescription of steps 
1-3 over and over for every combination of customer attributes defining each sub-group, and for 
event days and comparison days (i.e. to compute the errors), with 24 hourly estimates of 
reference loads and load impacts returned with empirical errors alongside of participant counts 
and population weighted hourly average temperatures. 

(5) Use the best-performing model: The load impact on comparison days is zero by definition, so 
the model that predicts the comparison-day load impacts to be closest to zero (on average) is 
the one that predicts baselines with the least bias. We assessed model variance (random error) 
using the same comparison-day impacts and calculated the overall variability in the deviation 
from zero. 

 
15 We are aware that DR can and very likely does have spillover effects on non-event days, but our job as 
evaluators of ex post impacts is to assess the impacts of calling an event vs. not calling an event because that is the 
dispatchable resource. 
16 We did not perform regression modeling for non-residential customers because of very high variability in 
electricity consumption and controlled loads across non-residential sites, and for some sites, such as those 
controlling EV charging, very high internal variability. The timing of loads such as electric vehicle charging can’t be 
effectively predicted based on explanatory variables available to us (such as temperature, hour of day, and day of 
the week). 
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Ex Post Model Selection 

We compared the four model’s performance against each other, looking for bias and random errors. 
Since these are non-event days, the mean impact should be zero.  

● If the mean is not at zero, this is evidence of bias.  
● Random error is shown by the length of the vertical lines in Figure 11, so models with less 

random error have shorter lines.  

Figure 11 shows non-event day mean (colored circles) impact and random error (vertical lines) for each 
baseline model for non-residential meters controlling different loads. This plot shows that we often see 
substantial bias (visible here as deviation from zero impact) in the CAISO 5-of-10 model, and very little 
bias in the centered 5-of-10 and 10-of-10 models.  

We selected the unadjusted 10-of-10 model because it has somewhat less random error than the 
unadjusted 5-of-10 model for most of the load types, while still having little to no bias. 

Figure 11. Nonresidential plot of bias and random error by load controlled for four baseline models 

 
Residential Ex Post Analysis 

For the residential ex post analysis, we estimated load impacts and reference loads for participants on 
event days compared to similar non-event days (comparison days) using panel regression, centered 5-of-

Chosen Model 
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10, unadjusted 10-of-10, centered 5-of-10 with DID, and 10-of-10 with DID. For each of these models, 
we estimated load impacts for each event, and for sub-groups, including IOU and LCA.  

We estimated average reference loads and load impacts (both with uncertainties) and tabulated meter 
count weighted temperatures for each hour of each event day for every sub-group modeled to report in 
quantitative deliverables. 

We used six steps to arrive at our ex post estimates for residential participants: 

(1) Identify comparison days for regression models and error estimates: Match temperature 
shapes for event days to similar non-event days using weather data.  

(2) Identify impact model input data: Assemble participant meter data and the local weather data 
associated with the sub-group(s) of customers whose impacts are to be modeled for event days 
and comparison days. The weather data is from NOAA’s Integrated Surface Database, with each 
meter matched to the nearest reliable weather station. 

(3) Run event models: Run the panel regression and the X-of-10 calculations to estimate the load 
impact on the event days. Also estimate the load impact on the comparison days; in the case of 
the panel regression this is done by leaving out one comparison day at a time and fitting the 
model using the other comparison days.  

(4) Estimate errors: Estimate model errors by running our event models on comparison days (days 
without events). The correct answer for these non-events is zero impact, so deviations from 
zero are taken as empirical model errors.17 

(5) Run and store estimates for every customer sub-group: Repeat the basic prescription of steps 
1-4 over and over for every combination of utility, LCA, and SubLAP, and for event days and 
comparison days (to compute the errors), with 24 hourly estimates of reference loads and load 
impacts returned with empirical errors alongside of participant counts and population weighted 
hourly average temperatures. 

(6) Use the best-performing model: The load impact on comparison days is zero by definition, so 
the model that predicts the comparison-day load impacts to be closest to zero (on average) is 
the one that predicts baselines with the least bias. We assessed model variance using the same 
comparison-day impacts and calculated the overall variability in the deviation from zero. 

Ex Post Model Selection 

We tested five modeling approaches for residential customers and compared the bias and random 
errors found during non-event days. (Non-event day impacts should be zero.) 

● If the average is not at zero, this is evidence of bias.  
● Random error is shown by the length of the vertical lines in Figure 12. Models with less random 

error have shorter lines.  

Figure 12 shows boxplots for each baseline model for residential meters in different LCAs. This plot 
shows that we often see substantial bias in the regression model, and very little bias in the DID 5-of-10 

 
17 The error metrics reported by the regression models are often under-estimates since regression models use only 
the data provided to estimate both repression parameters and errors. In order to estimate out-of-sample error 
(counterfactual baselines are out-of-sample because they are unmeasurable) we use out-of-sample comparison 
days to provide error estimates. 
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and DID 10-of-10 models. We selected the DID 10-of-10 model because it has somewhat less random 
error than the DID 5-of-10 model for most of the LCAs, while still having very little bias. 

Figure 12. Residential boxplots of bias and random error by LCA for five baseline models 

 
Note: Box and whiskers summarize non-event day impacts by Leap (where the expected result for the median 
would be zero). Boxes extend from the 25th to the 75th percentile, with the median, or 50th percentile marked with a 
horizontal line. Outliers are shown as unmarked points. 

Residential Battery Storage 

CDA simulated residential battery storage event impacts from data provided by Leap.18 Leap provided 
inverter and battery data for 369 residential sites across California that have solar PV and battery 
systems. The data includes 15-minute interval measurements for a large portion of 2019: energy 
imported and exported from the utility, PV generation, battery charge level, battery charge energy and 
battery discharge energy. This provides a full picture of how the household is consuming energy and 
how the battery + PV system is working. Appendix H: Data Cleaning and Analysis for Residential 
Batteries describes the data cleaning and modeling steps in detail. 

 
18 Leap started to enroll residential battery customers late in 2019, after the summer event season, so these 
customers were not included in any test events. 

Chosen Model 
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Figure 13. Residential Battery Storage Inputs for Impacts  

 
Leap also provided an in-depth description of the algorithm they plan to use for non-event and event 
day operation of enrolled residential battery systems. CDA applied this algorithm to the data to calculate 
baselines and impacts that simulate events using actual PV and battery performance, and actual site 
electricity consumption. We performed these calculations for seven (7) representative event days, one 
for each month where there was sufficient data (May, June, July, August, October, November, and 
December 2019). 

Leap’s algorithm clearly defines non-event and event day operation of the battery systems. Effectively, 
on non-event days the batteries charge with energy from the PV and then export at full capacity starting 
at 4pm until the battery is discharged to its reserve level (generally between 10 and 20% of charge). On 
event days, the batteries charge from the PV until the event start time, and then the batteries fulfill the 
household electricity demand (zeroing out imports, up to the maximum discharge rate of the battery 
system) until discharged to the reserve level. 

We calculated the site electricity consumption for each 15-minute period using the meter data: 

!"#$	&$'()& = +#","#-	"'./0# + 23	4$)$0(#"/) + 5(##$0-	&"!6ℎ(04$ − +#","#-	$9./0#
− 5(##$0-	6ℎ(04$	

The baseline is the combination of site demand with the PV and battery operation calculated for non-
event days as it would be visible at the utility meter, with the baseline set to zero during periods of net 
export.  

● CDA calculated baseline on the selected event days by applying the measured PV generation to 
charging the battery until 4 pm, then assuming that the battery discharges at its maximum 
discharge rate from 4 pm until the battery discharges to its reserve level (usually around 5:30).  

● After the battery is discharged, the PV generation is used to provide energy for site consumption 
or exported. 

The impact is the baseline minus the event day consumption.  

● CDA calculated electricity consumption on event days also using the Leap algorithm, which 
states that the systems will charge the batteries from PV generation until they are at full charge 
or the event starts.  

● At the start of the event, the PV generation and battery discharge provide enough energy to 
zero out load visible at the utility meter up to the battery and/or inverter maximum load. This 
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discharge continues this until the end of the event period or when the battery is discharged to 
the reserve level.  

● The event day consumption is set to zero during periods of net export. 

CDA estimated error by running the same baseline and event-day calculations on a set of 10-20 days 
from each month. The random error is the standard error of average baseline and impacts for those 
non-event days. Since we simulated the non-event day baselines, it is not possible to estimate bias. 

Ex Ante Load Impact Analysis Methods 
As opposed to ex post analyses, which quantify what has happened in the past, ex ante predictions 
attempt to quantify the future. Ex ante load impact forecasts predict the load impact that would occur in 
standard event times and conditions for a total of four hypothetical weather-years.19 For this report, 
predictions are made for the peak day of each month for two standard weather years – corresponding 
to conditions that are expected to lead to peak electric load in either one out of every two years, or one 
out of every ten years on average. There is a slight difference in the conditions that cause peak load for 
California Independent System Operator (CAISO) and for Investor-Owned Utilities (IOU). Combining the 
two peaking conditions with the two types of weather year leads to four sets of standard weather data. 

The load impact capacity in future years is, of course, strongly dependent on the number, type, and 
scale of customers who are enrolled. Leap has provided a forecast of future enrollment, in the form of 
the future load that they anticipate being able to control in future years. They provided this forecast for 
each subLAP, for each load type, for each year. Taken at face value, these forecasts would themselves 
constitute the ex ante predictions that are needed, but such a prediction would be completely 
disconnected from the ex post results. 

Instead, we treat the forecasts as a scaling factor: given the observed impact per meter in 2019, in each 
load type, how many more meters would need to be in the program in order to meet Leap’s forecast of 
their load impact capacity? This converts Leap’s impact capacity forecast to an enrollment forecast.  

We then fit statistical models to the ex post data to quantify the performance per meter. The models 
serve three roles:  

1. They quantify the extent to which the actual impact per meter is uncertain even in the ex post 
data, thus leading to uncertainty in future capacity even if the program grows as expected.  

2. The models quantify the amount of variation in load shed per meter from LCA to LCA, thus 
allowing quantification of the uncertainty if the program expands into LCAs in which there are 
currently no participants, as they are forecast to do.  

3. The models determine the temperature-dependence of the load impact for residential and 
commercial air conditioning and for residential batteries – the only three load types for which 
there is assumed to be temperature-dependence -- so that the load impact can be adjusted to 
the ex ante weather conditions. 

The models were fit to data from calendar year 2019 and used to predict the load impact per meter for 
the standard weather conditions mentioned above, for the projected mix of customers by load type and 
LCA that is forecasted for future years. The predicted load impact per participant multiplied by the 
projected number of participants equals the projected aggregate load impact.  

 
19 For purposes of this report, we describe the impacts from the ex ante analysis as predictions and impacts 
received from Leap of their enrollments as forecasts. 
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By construction, the central estimate of the aggregate load shed in each category and each future year is 
fairly close to Leap’s forecast, but even the central estimate is not identical to Leap’s forecast for 
reasons described in items 1 and 2 above. Additionally, the model predictions include uncertainties, 
which are available in the table generator spreadsheet. 

Finally, we applied ‘fatigue’ --- degradation of the results for long events – to the model predictions for 
both commercial and residential air conditioning. The air conditioning ex post events that were used to 
train the models were two hours long. The models predict the load shed per meter in a given LCA and in 
a given hour based only on which LCA it is, and on the outdoor air temperature in that hour, making no 
distinction between whether the hour is, for example, part of a two-hour event and a four-hour event. 
But customers who will tolerate higher air temperatures for an hour or two will not necessarily tolerate 
them for longer periods, so one might expect the amount of load impact to decay or degrade as the 
hours pass. This effect is included by decreasing the amount of load shed after the second hour, 
compared to what is predicted from the models. There is a section in this report that discusses where 
we obtained the degradation factors. 

All predictions discussed in this report are made for four-hour events in the five-hour Resource 
Adequacy (RA) time window that runs from 4 p.m. through 9 p.m., unless specifically noted. 

Ex Ante Methods 

The CDA team estimated the ex ante load impacts for monthly typical and peak days for 2020-2030, 
separately for nonresidential and residential customers. Ex ante modeling uses ex post results and 
models the effect of various external determinants of performance, like location, load types, outside 
temperature, etc. on load impacts. We then apply forecasts for the external determinants of 
performance with the model to make predictions for future load impacts. 

We fit the statistical models to the ex-post data, to develop predictions of load impact as a function of 
LCA and temperature for each load type. The modeling approach, called ‘Bayesian Hierarchical 
Modeling’, is described in Appendix E. The main reason for choosing this approach is that it provides 
reasonable estimates of uncertainty, especially for LCAs where Leap plans to expand and there is no test 
data to include in the ex post analysis.  It would be wrong to assume that the unobserved LCA will 
provide exactly the same load impact per customer as is observed in the LCAs for which we do have 
data, but we also expect that the unobserved LCA is unlikely to have wildly different load impact per 
customer from the LCAs for which we do have data. The Bayesian analysis provides a statistical method 
that captures this expected behavior.  

As part of the ex ante analysis, the CDA team estimated ex ante impacts for all areas covered by Leap 
customers in 2019, and additionally for SDG&E territory, where Leap is currently recruiting and 
registering customers.  

Ex Ante Modeling 

The ex ante load impact predictions require extrapolating the ex post impacts to future years: 

1. For each hour of the day, each LCA, and separately for residential and nonresidential customers, 
find the ex post load impact for each event using the approach described above in the section 
on the ‘Ex-Post Impact Analysis’. This yields one number per hour of the day, in each LCA, and 
load type for each event.  

2. Fit a Bayesian hierarchical model – a type of regression model -- to predict ex post load impact 
from the outdoor air temperature at that hour, for that event. The model also generates 
uncertainties in the form of confidence intervals.  
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3. Use the model to make predictions for the required weather scenarios, including typical event 
days and monthly system peak days for the IOUs 1-in-2 (i.e., normal) and 1-in-10 (i.e., extreme) 
and CAISO 1-in-2 (i.e., normal) and 1-in-10 (i.e., extreme). These scenarios use the current 
resource adequacy 4-9 PM window, extending events to cover the entire window.  

4. Baseline loads (reference loads) are needed in order to provide estimates of the relative 
(percentage) load shed due to Leap events for the weather scenarios. We fit models to predict 
hourly baseline load as a function of weather and season. The resulting models were used to 
predict the baseline loads for the weather scenarios and customer type.  

Three of the ex ante models use outdoor air temperature as a predictive variable; these are the 
residential and commercial air conditioning models, and the residential battery model. Use of 
temperature as a predictive variable for the air conditioning model does not need explanation. We use 
temperature in the battery model because most of the residential batteries are charged from 
photovoltaic systems, and thus have a state of charge dependent on the amount of solar energy stored 
on the event day. Temperature serves as a proxy for both solar access – days are longer and the sun is 
higher in the sky in summer than in winter – and for the sunniness of the day, since sunny days tend to 
be warmer.
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Ex Post Results 
Our ex post results are by sector, with nonresidential sector first followed by the residential sector. Leap 
called a total of 26 two-hour test events, with each event calling only a portion of their available 
capacity. Throughout most of this section, the reported numbers are estimates of impacts for 
participating meters and are not Leap’s full resource. We provide the ex post full resource estimate for 
Leap’s 2019 resource at the end of the nonresidential and residential sections. 

Throughout this report, averages represent the best estimate of measured impacts, and 90% confidence 
intervals provide a measure of uncertainty. There are always uncertainties in impacts. For Leap, ex post 
uncertainties are due to three sources: 

1. Uncertainty in modeled baselines 
2. High variability in impacts across participating meters due to large differences in baselines  
3. Variable participation in events due to different customers being dispatched 

These uncertainties show up as wider or smaller confidence intervals associated with the test events. 
Additionally, as results are “rolled up” across more events and more meters, these uncertainties shrink. 

Nonresidential  
Number of Events 

For the nonresidential sector, CDA identified and estimated ex post impacts for 26 discrete Leap DR 
events in 2019. All events were test events. Table 9 below presents the nonresidential test event 
information. Most test events were called in August, but more participants were included in the months 
of April to June. Aggregate impacts ranged from 11% to 27% of the baseline values with the largest 
aggregate load shed (10.1 MW) occurring during the month of August, the month with the largest 
number of events. 

Test events always included a subset of the total customer portfolio, so Leap’s aggregate impacts across 
their entire portfolio in a given month and in 2019 exceeded any of the individual aggregate impacts 
noted in the table below. 

Table 9. Nonresidential summary of 2019 events, temperature, baselines, and impacts 

month 
# of 

events 

average # of 
participant 

meters 
average 

temperature (F) 

average 
baseline 

(kW) 

average 
impact 

(kW) 

aggregate 
baseline 

(MW) 
aggregate 

impact (MW) 
impact 

% 
April 1 233 78 86 9 20.0 2.2 11% 
May 3 123 82 67 10 14.6 1.2 15% 
June 6 116 78 118 23 24.6 4.6 20% 
August 15 58 87 142 39 32.1 10.1 27% 

Average Ex Post Load Impacts by Test Event Months 

Figure 14 depicts the range of per-meter impacts by month for events called in 2019. Within this figure, 
August has the highest average impact (39 kW) with the majority of the impact coming from air 
conditioning and pumping loads. April, with the lowest average impact (9 kW) also had the majority of 
impact from air conditioning and pumping loads, but with the impact coming from more meters and a 
slightly cooler average temperature.  
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The highest average per-meter impact is 162 kW during November, which is not included in the table 
above or figure below because it is for one event with one participating meter. August has the widest 
range of average impacts due to a smaller number of participating meters and greater proportion of EV 
charging in each event (EVs impacts were found to be highly variable, as discussed in the next section). 
April, with the highest number of meters per event and no EV charging, has the smallest range. The 
overall, full resource estimate at the far right shows an estimate of end-of-2019 enrolled capacity which 
has lower uncertainty due to combining data from all events and participating meters across months 
(including November). 

Figure 14. Nonresidential ex post monthly average event impacts 

 
Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 

Average Load Impacts by Customer Type and LCA 

This section presents average load impacts for customer type and LCA. 

Customer Type Results 

Among the multiple customers nonresidential load impacts (customer types), the “other” has the 
highest per-meter impact (100 kW).20 Air conditioning, small commercial battery and thermal storage 
loads all brought in similar loads (between 4 and 14 kW) per meter.  

Electric vehicles, large commercial batteries, other, and thermal storage impacts have confidence 
intervals that cross zero (confidence intervals that cross zero do not mean that the estimate was not 

 
20 “Other” loads are cold storage and light manufacturing facilities. 
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measurable, but rather that there is just more uncertainty than if it didn’t21). The “other” group is 
especially variable in terms of both customer demand and impacts, which results in higher uncertainty 
than if the customers were homogenous. 

During 2019 test events, commercial electric vehicle charging often dropped out after the first hour (this 
appears to be a continuation of their practice under DRAM rules that draw upon the best hour of event 
impacts), which is most likely the cause for the confidence interval to cross zero.22 The event drop-out 
was especially visible in the specific LCAs where one of Leap’s partners operates. For example, in one 
LCA, the first hour had an impact of 31% of baseline and the second hour had a -1% impact. Leap 
indicates that they have discussed this issue with their partner and that they are “ensuring that our 
partners are committed and incentivized to perform across entire test and event windows, and we 
therefore expect performance to increase for multi-hour tests and events in 2020 and beyond.” 

Figure 15. Nonresidential ex post per-meter impacts (average of April - November) by load type  

  
Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 

 
21 The American Statistical Association statement on statistical significance states, “Scientific conclusions and business or 

policy decisions should not be based only on whether a p-value passes a specific threshold.” Wasserstein, Ronald 
L., and Nicole A. Lazar. The ASA Statement on P-Values: Context, Process, and Purpose. Taylor & Francis, 2016. 
 
22 Leap indicated that one of their electric vehicle partners optimized for one hour test events as the DRAM 
contract for Generic capacity stipulated that performance would be calculated for the highest hour.  
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LCA-specific Results 

Figure 16. shows the average ex post impacts grouped by LCA. Impacts are a function of the load type in 
each area more than by temperature. Stockton, with a negative load impact, included only one 
participating meter. Greater Bay has the highest average impact (54 kW) and the widest variation (-51 to 
158 kW). The high variation in Greater Bay is due to high uncertainty in EV impact estimates as most of 
the participating meters in Greater Bay are for EV charging loads. 

Figure 16. Nonresidential ex post average impacts (average of April - November)  
by location (Local Capacity Area) 

 
 Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 

 

Determinants of aggregate results 

Aggregate impacts are population weighted per-meter impacts for meters included in test events.23 Per-
meter impacts are a function of baseline loads and type of load. For the nonresidential impacts, only the 
air conditioning loads are driven by temperature. Figure 17 presents ex post summaries of per-meter 
baseline loads, per-meter impacts, impacts as a percent of baseline, and average event meters, followed 
by the aggregate impacts. From this comparison, one can clearly see the relationship between the 
aggregate impact and per-meter impact and number of meters. For example, pumping has the highest 

 
23 The aggregate results do not include all meters enrolled with Leap as of the end of 2019. Results are from those 
meters that were dispatched during test events (See Table 9 for a count of meters in the test events by LCA and 
type). 
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aggregate impact (~4 MWh/hr), but has a moderate average impact and a high number of meters. While 
air conditioning has the highest number of meters, the low per-meter impact brings down the aggregate 
impact. 

Figure 17. Nonresidential ex post monthly average baseline loads, per-meter impacts, impacts as a 
percentage of baseline loads, meter counts for each load type, and aggregate impacts (for meters in test 
events) 

 
Note that each graph has a different y-axis range.  

Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 
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Aggregate impacts within an LCA are a function of the specific load type. Table 10 shows the variation in 
load type and number of meters included in ex post analysis for the load type across the LCAs.  

Table 10. Nonresidential summary of 2019 meters included in test events by LCA and load type 

LCA Air conditioning 

Electric 
Vehicle 

Charging 

Large 
Commercial 

Battery Other Pumping 

Small 
Commercial 

Battery 
Thermal 
Storage 

Big Creek / Ventura 28 <15 <15 <15 <15 <15  
Greater Bay  16  <15   <15 
Greater Fresno  <15 <15 <15 55   
LA Basin 135 15 <15 <15 138 <15  
North Coast / North Bay  <15    <15 <15 
Stockton  <15      
Unspecified Local Area <15 <15   <15 <15  

Note: Leap has nonresidential meters located in Sierra (3 meters) that were not part of test events and so are not 
modeled in the ex post analysis. 

Aggregate Ex Post Summary 

Among the LCAs, the LA Basin and Greater Fresno have the top-two participating meter counts during 
the ex post events which overcomes low per-meter impacts placing them toward the top of aggregate 
impacts. By comparison, Big Creek/Ventura has a higher average per-meter count during the events 
than Greater Bay, but a lower average impact which leads both Big Creek/Ventura and Greater Bay to 
have comparable aggregate impacts. Stockton, on the other hand, shows an aggregate impact that is 
below zero because impacts are just from electric vehicle charging stations in the LCA and most of them 
participated for only half the test event period (see discussion above under Customer Type Results). 
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Figure 18. Nonresidential ex post aggregate load shed  
(overall, by LCA for meters in test events)  

 
Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 

Nonresidential Ex Post Results for Leap’s Full Resource 

Leap added customers throughout 2019, with many being added after test events were called. As shown 
in Table 11, when extrapolating the per-meter ex post results described earlier in this section to the full 
resource available as of the end of 2019, Leap’s nonresidential sector provides an impact of 26.6 MW.  

Table 11. Nonresidential ex post impacts for Leap’s full resource 

ik 

Ex Post Mean 
Event 
Temperature 
(F) 

Ex Post 
Mean 
Impact 
(kW) 

Ex Post 
Mean 
Baseline 
(kW) 

Ex Post 
Percent 
Impact 
(%) 

Full 
Resource 
Enrollment 
Count 

Full 
Resource 
Total 
Impact 
(MW) 

Full 
Resource 
Std.Err. 
(MW) 

90% Confidence 
Interval (MW) 

Airconditioning 80.3 14.2 117.6 12 203 2.89 0.59 (1.93, 3.85) 

Electric Vehicle 81.6 27.6 342.0 8 139 3.83 8.89 (-10.79, 18.46) 
Lg Comm Battery 85.6 47.9 231.5 21 21 1.01 0.68 (-0.11,2.12) 
Other  75.8 101.0 219.4 46 64 6.46 4.21 (-0.46, 13.38) 
Pumping 84.7 35.5 57.9 61 320 11.34 2.14 (7.82, 14.87) 
Sm Comm Battery 79.7 10.2 27.1 38 98 1.00 0.55 (0.10, 1.91) 
Thermal Storage 86.2 4.0 188.5 2 3 0.01 0.05 (-0.08, 0.10) 
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All 82.5 31.3 93.5 34 848 26.55 4.02 (19.94. 33.16) 
 

Residential  
Number of events 

For the residential sector, CDA identified and estimated ex post impacts for 16 discrete Leap events in 
2019 for air conditioning loads. All events were test events. As described in the methods section, CDA 
synthesized events for the residential batteries for the months of May, June, July, August, October, 
November, and December 2019 using 15-minute data from rate arbitrage dispatch. 

Table 12 below presents the residential test event information. August has the most test events and a 
higher number of participants, on average. For the two months that included air conditioning loads 
(June and August), aggregate impacts were about a third of baseline values. 

Test events always included a subset of the total customer portfolio, so Leap’s aggregate impacts across 
their entire portfolio in a given month and in 2019 exceeded any of the individual aggregate impacts 
noted in the table below. 

Table 12. Residential summary of 2019 events, conditions, enrollment, and impacts 

month 
# of 

events 

average # of 
participant 

meters 
average 

temperature (F) 
baseline 

load (kW) 

per-meter 
impact 

(kW) 

aggregate 
baseline load 

(kW) 
aggregate 

impact (kW) 
impact 

% 
May 1 89 71 0.65 0.44 58 39 68% 
Jun* 7 264 76 0.96 0.31 398 136 32% 
Jul 1 102 81 1.30 0.32 132 33 25% 
Aug* 11 720 89 1.82 0.60 3226 1027 33% 
Oct 1 101 78 1.07 0.65 108 66 61% 
Nov 1 99 60 0.96 0.74 95 73 77% 
Dec 1 101 53 1.12 0.74 113 75 66% 

Note: Participant meter counts for residential batteries in ex post events from Leap solar partner. 
*Includes air conditioning and storage battery meters in events. All other months are impacts for storage batteries 
only. 

Average Ex Post Load Impacts by Test Event Months 

Figure 14 depicts the range of per-participant impacts by month for all events called in 2019. The highest 
monthly weighted average per-participant impact are November and December with 0.74 kW while 
June is less than half that value (at ~0.31 kW). Months with only the residential battery impacts (May, 
July, October, November, and December) have larger confidence intervals because these are based on 
just over 100 meters, while residential AC has thousands of dispatchable customers and several hundred 
that participated in each event. 
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Figure 19. Residential ex post monthly average event impacts 

 
Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 

Average Load Impact by Load Type 

Figure 20 shows the two residential loads controlled by Leap. The average air conditioner load impact 
(0.55 kWh/hr) is about twice the average residential battery load impact (0.27 kWh/hr). The large 
confidence interval for batteries is primarily due to variation in their baseline loads given their small 
sample size of just over 100 meters. 
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Figure 20. Residential ex post average impacts by load type for all test events 

 
Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 

Average Load Impacts by Temperature and Time of Day 

In Figure 21, we see the relationship between air conditioning per-meter event impact and temperature 
based on monthly event roll-ups. The figure depicts the average impacts per-meter (y-axis) for June and 
August events called in 2019 vs. the population weighted outside temperature during the events (x-
axis), with dot sizes roughly corresponding to participant counts within the LCAs. The data confirms a 
rough correlation between impacts and outside temperature, with plenty of variability caused by other 
factors.  
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Figure 21. Residential ex post scatter plot of monthly average impacts vs. outside temperature  
(air conditioning loads only) 

 
Each dot in the figure represents AC participants within a specific LCA during an event. Dot size indicates number of 

participants. 

Event timing can impact outcomes, but for the residential air conditioning impacts, temperature effects 
were larger. Figure 22 provides a view of the average per-meter impacts for each event. The event start 
time is shown by different colors and the hourly temperature ranges during the events are the x-axis. 
Events that began when it was less than 75 degrees (start times of 4 PM and 5 PM) have the lowest 
impacts while events with temperatures over 90 degrees (also start times of 4 PM and 5 PM) had the 
highest impacts.  
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Figure 22. Residential ex post event average impact by time of day  
(air conditioning load only) 

 
Note: Event start time 16:00 is 4 PM, 17:00 is 5 PM, and 19:00 is 7 PM  

Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 

Among the LCAs, Kern, Greater Fresno, and Sierra have the highest temperatures during the test events 
and therefore also have the higher per-meter impacts for air conditioning, which makes up the majority 
of the residential load. Notably, Kern has much higher average baseline than the other LCAs, which helps 
to explain the higher impacts. San Diego and LA Basin, with only battery storage impacts, have among 
the lowest per-meter impacts. 
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Figure 23. Residential ex post average per-meter impacts for all events grouped by LCA 

 
Circles are the average across all participant meters in the monthly event. Lines are the 90% confidence intervals. 

Determinants of aggregate results 

Aggregate impacts are population weighted per-meter impacts. Much of the residential Leap impacts 
are from air conditioning, which is driven by seasonal factors. Residential batteries, on the other hand, 
show little seasonal difference (i.e. there is sufficient insolation even in the winter to fill the battery). 

Aggregate Ex Post Summary  

Aggregate impacts are population weighted per-meter impacts for meters included in Leap test events 
(residential air conditioning) or CDA simulated test events (residential batteries).24 

Figure 24 depicts the monthly roll-up event aggregate impacts by load type. With over an order of 
magnitude more participants, air conditioning has a higher impact than residential batteries in the two 
months when there were test events, topping out at about 1 MWh/hr in August.  

 
24 The aggregate results do not include all meters enrolled with Leap as of the end of 2019. It is just those meters 
that were dispatched during test events (See Table 9 for a count of meters in the test events by LCA and type). 
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Figure 24. Residential ex post aggregate load impact  
(overall, by month and load type for meters in test events) 

 
Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 

Greater Bay and Greater Fresno have the two highest meter counts and the two highest aggregate 
impacts. While Greater Bay has lower per-meter impacts than Greater Fresno (shown in Figure 23), 
there are close to twice as many meters in the Greater Bay area, thus bringing in more aggregate load 
impacts. Big Creek/Ventura has a per-meter impact comparable to other LCAs but has lowest aggregate 
impact. This is because there are very few meters in this LCA. 
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Figure 25. Residential ex post aggregate impact across all event grouped by LCA  
(for meters in test events) 

 
Circles are the average across all participants in the monthly event. Lines are the 90% confidence intervals. 

Residential Ex Post Results for Leap’s Full Resource 

Leap added customers throughout 2019, with many being added after test events were called in 2019. 
When applying the per-meter ex post results described earlier in this section to the full resource 
available as of the end of 2019, Leap’s nonresidential sector provides 3.9 MW.  

Table 13. Residential ex post impacts for Leap’s full resource 

Load Type 

Ex Post Mean 
Event 
Temperature 
(F) 

Ex Post 
Mean 
Impact 
(kW) 

Ex Post 
Mean 
Baseline 
(kW) 

Ex Post 
Percent 
Impact 
(%) 

Full 
Resource 
Enrollment 
Count 

Full 
Resource 
Total Impact 
(MW) 

Std. Err 
(MW) 

90% Conf. 
Interval (low, 
high) (MW) 

Air Conditioning 86.9 0.6 1.7 33 6990 3.86 0.16 (3.59, 4.13) 

Battery 71.4 0.3 0.8 34 108 0.03 0.02 (0.00, 0.06) 
Total 86.4 0.5 1.6 33 7098 3.89 0.16 (3.63, 4.16) 
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Enrollment Forecast 
To make ex ante load forecasts, a forecast for changes from the ex post values is needed by SubLAP and 
customer category. CDA used forecasts provided by Leap for this purpose. Leap had significant growth in 
2019 and projects increasing impacts for the next several years.  

In most program evaluations with which we are familiar, the company that runs the program provides 
estimates of the projected number of enrollees in the future, and this is then multiplied by the load shed 
per customer as derived from historical data in order to forecast the future load impact. Given the 
heterogeneity of their load types and their internal business focus on capacity (including contracts with 
partners with deliverables in terms of capacity), Leap’s forecasting alters this process by directly 
forecasting the load impact they expect to provide in the future. If we (CDA) were to accept Leap’s 
forecasts at face value, then there is no connection between the ex post and ex ante results, and we 
could simply summarize Leap’s forecasts and present them as ex ante results. Instead of following that 
hollow procedure, we interpret Leap’s forecasts as expectations of how much their customer base will 
scale up from its current level, which is how enrollment forecasts can be interpreted as well. We note 
that Leap’s forecasting approach, though unconventional, is not inherently more subject to error than 
the approach of forecasting by the number of new customers. 

For example, if Leap gives their Residential AC impact as 6 MW in 2019 and projects 15 MW in 2020, this 
is an increase by a factor of 2.5.  For purposes of the evaluation we accept that Leap will attain the 
number of meters in the category that would give them their forecasted load impact if the impact per 
meter is the same that it was during 2019, but we do not assume that the impact per meter will in fact 
remain constant: 

● Leap plans to expand into LCAs where they do not currently operate and where they therefore 
have little data, or in some cases no data, available for the ex post analysis. For instance, several 
LCAs had no residential air conditioning meters in 2019. 

● 2019 events took place only in certain months, but we need to predict capacity for all months of 
the year. For example, residential air conditioning events took place only in June and August in 
2019.  

CDA used a Bayesian analysis that gives a way to quantify how big those two effects are likely to be. That 
is, based on what we know, how likely is it that the un-observed LCAs are very different from the ones 
we know? The model also gives us reasonable uncertainty bounds on the aggregate load shed 
predictions. 

Enrollment Forecast Rationale 
CDA did not produce the enrollment forecast used for the ex ante modeling. The forecast was provided 
by Leap based on their internal growth models used for budgeting and planning and CDA made no 
changes. Leap’s forecast rationale is included in Appendix B: Leap enrollment forecast rationale (note 
that this rationale is not available in the public version for confidentiality reasons). 

Forecasted Enrollment 
Leap projects the mix of customers among LCAs to change substantially. The projected growth in 
enrollment varies by SubLAP and is based upon both the data from Leap’s enrollments to date, as well 
as Leap’s forward-looking partner pipeline and planned recruitment efforts. Figure 26 shows the 
forecast impacts within the RA window for the medium forecast by load type.  
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Figure 26. Leap forecast of aggregate impacts for medium enrollment by load type during RA window 

 
Leap forecasts the following aggregate impacts for medium enrollment forecast by LCA across both 
sectors. 
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Figure 27. Leap forecast of aggregate impacts for medium enrollment by LCA during RA window 

 

Ex-Ante Results 
Ex ante load impacts are based on predictions for standard event times and conditions. Predictions are 
made for two standard weather years – that is, two sets of monthly peak temperatures – corresponding 
to conditions that are expected to lead to peak electric load in one out of every two years (1-in-2) and 
one out of every ten years (1-in-10) on average. There is a slight difference in the conditions that cause 
peak load for the statewide California Independent System Operator (CAISO) and Investor-Owned 
Utilities (IOU) territories. Accounting for the two peaking conditions with the two weather years leads to 
four sets of standard weather data per territory. 

Unless explicitly stated, all predictions discussed in this report are made for events in the Resource 
Adequacy (RA) time window that runs from 4 p.m. through 9 p.m. and for the medium enrollment 
forecast. (See at Figure 41 the end of the combined section to see predicted impacts for all three 
enrollment forecasts.) 

We present the ex ante results for the nonresidential sector followed by the results for the residential 
sector. Lastly, we combine the two sectors to show the Leap resource across both sectors. 
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Nonresidential 
Figure 33 shows the predicted load impact per meter for each of the four sets of weather conditions 
described above. All four sets of conditions produce similar predictions and have minimal variation by 
month (as much of the impacts are not weather sensitive). For these four ex ante weather-years the 
highest load impact per customer occurs in June, July and August, at about 25 kW per meter; the lowest 
occurs in five months (January, February, March, November and December) at about 22.5 kW per 
customer.   

Figure 28. Nonresidential predicted per-meter load impact by month,  
mean over RA hours, for four standard sets of weather conditions (medium forecast) 
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Figure 35 shows the predicted aggregate load impact for 2020; this is the product of Leap forecast 
enrollment in each month times the predicted load shed per meter in each month, again for the 
standard weather conditions. The maximum is around 83 MWh/hr statewide, in August.  

Figure 29. Nonresidential predicted aggregate load impact by month, 
mean over RA hours, for four standard sets of weather conditions in 2020 (medium forecast) 
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Figure 36 shows the same sort of information, this time for the next several years. The projected year-
over-year increase in customers (and thus event participants) leads to a very rapid year-over-year 
increase in load impact.  

Figure 30. Nonresidential predicted aggregate load impact, by month and year (medium forecast) 
mean over RA hours  

 
Table 15 summarizes the predicted load impact by year for the August 1-in-2 monthly CAISO peak day 
and the IOU 1-in-2 peak days. The forecast increase over the next three years brings about a four-fold 
increase in impacts.  

Table 14. Nonresidential predicted aggregate load impact for August CAISO 1-in-2 day and IOU 1-in-2 
day 

Year CAISO 1-in-2 day IOU 1-in-2 day 
Temp (F) Aggregate Impact 

(MW) 
Temp (F) Aggregate Impact 

(MW) 
2020 85.0 82.8 85.6 83.1 
2021 85.0 148.1 85.6 148.8 
2022 85.0 238.6 85.6 239.7 
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2023 85.0 377.9 85.6 379.9 
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The ex ante predictions were made for each LCA. Figure 37 is an example: it shows the predicted 
aggregate impact for August, for the IOU 1-in-2 weather year for 2020-2023. Forecast enrollment for 
each LCA is growing over these years, with LA Basin and Greater Bay providing the highest impacts each 
year. 

Figure 31. Nonresidential predicted aggregate impact by Local Capacity Area,  
mean over RA hours, for August of different years, IOU 1-in-2 weather data (medium forecast) 
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Aggregate impacts by month for the IOU 1-in-2 weather year are shown in Figure 38, this time 
separately for PG&E, SCE, and SDG&E and by year. PG&E brings in the highest aggregate impacts across 
all months. 

Figure 32. Nonresidential predicted aggregate impact by month,  
mean over RA hours, IOU 1-in-2 weather data, separately by utility (medium forecast) 
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Residential 
Figure 33 shows the predicted load impact per meter for each of the four sets of weather conditions 
described above. All four sets of conditions produce similar predictions. For these four ex ante weather-
years the highest load impact per customer occurs in June and July, at about 0.60 kW per customer; the 
lowest occurs in November through March, at about 0.20 kW per customer.   

Figure 33. Residential predicted per-meter load impact by month,  
for four standard sets of weather conditions (medium forecast) 
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The load impacts vary by month and time of day. Figure 34 shows that air conditioning in July has some 
of the highest predicted load impact and that it falls across the RA window. Predicted impacts from 
batteries, on the other hand, are lower than air conditioning, have their highest impacts in the non-
summer months, and increase across the RA window. 

Figure 34 Residential predicted load impact, for IOU 1-in-2 weather year and by month and hour 
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Figure 35 shows the predicted aggregate load impact for 2020; this is the product of Leap’s forecast 
enrollment in each month multiplied by the predicted load shed per customer in each month, again for 
the standard weather conditions. The maximum is around 24 MW statewide, in June or July (depending 
on the specific weather condition. also note that this represents aggressive growth over the ex post full 
resource value for 2019). 

Figure 35. Residential predicted aggregate load impact by month 
for four standard sets of weather conditions in 2020 (medium forecast) 
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Figure 36 shows the same sort of information, this time for the next several years. The projected year-
over-year increase in customers (and thus event participants) leads to a very rapid year-over-year 
increase in load impact. For example, August impacts for the IOU 1-in-2 weather year in 2020 are around 
20 MWh/hr while August impacts in 2023 are about 200 MWh/hr higher. 

Figure 36. Residential predicted aggregate load impact, by month and year, 
mean over RA hours (medium forecast) 

 

 
Table 15 shows the predicted load impact by year for the August 1-in-2 monthly CAISO peak day and the 
IOU 1-in-2 peak days. The large predicted impact increase over the next two years is due to the forecast 
enrollment increase. 

Table 15. Residential predicted aggregate load impact for August CAISO 1-in-2 day and IOU 1-in-2 day 

Year CAISO 1-in-2 day IOU 1-in-2 day 

Temp (F) Aggregate Impact (MW) Temp (F) Aggregate Impact (MW) 

2020 86.8 18.3 88.8 20.1 

2021 86.4 53.0 88.1 57.1 

2022 86.3 112.8 88.0 121.2 

2023 86.3 208.0 88.0 222.3 
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The ex ante predictions were made for each LCA level. Figure 37 shows the predicted aggregate impact 
for August, for the IOU 1-in-2 weather year by LCA. Greater Bay and the Unspecified Local Areas have 
the highest aggregate impacts across the years. While Leap forecasts impacts from the Unspecified Local 
Areas that are lower than LA Basin (for both sectors), Leap forecasts a large increase in impacts from 
residential air conditioning. Because Unspecified Local Area for residential air conditioning has a higher 
predicted impact than the LA Basin, more aggregate impacts occur in this area. 

Figure 37. Residential predicted aggregate impact by Local Capacity Area, mean over RA hours, IOU 1-in-
2 weather data, and for August of different years (medium forecast) 
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Aggregate impacts by month are shown in Figure 38, separately for PG&E, SCE, and SDG&E and by year. 

Figure 38. Residential predicted aggregate impact by month, mean over RA hours,  
IOU 1-in-2 weather data, separately by utility (medium forecast) 

 
SCE and SDG&E have lower impacts in the summer because summer impacts from residential batteries are lower 

than shoulder season due to batteries discharging to capacity from higher loads in the summer 
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Combined Nonresidential and Residential Forecast 
Leap provides a combined resource across both nonresidential and residential sectors. The previous 
sections provided ex ante results by sector for clarity. This section combines the results and provides the 
total ex ante Leap resource. 

Figure 39 and Figure 40 show the combined nonresidential and residential predicted impacts for the 
medium enrollment forecast. Conditional on the enrollment forecast, CDA projects that Leap resources 
could provide about 100 MWh/hr in August 2020 and increasing over the years to slightly over 600 
MWh/hr in August 2023. As shown below, June or July have the highest monthly impacts (depending on 
the weather scenario).  

Figure 39. Combined sector predicted impacts by month and year, mean over RA hours, (medium 
forecast) (nonresidential and residential resources combined) 

 
  



 

2019 Leap Demand Response Results                                             62 

 

Figure 40 shows that Greater Bay and LA Basin have the highest predicted impacts across the years, with 
about two-thirds of their impacts from the nonresidential sector. The increased impacts for Kern and 
Stockton over the years are driven more by residential impacts than nonresidential impacts.  

Figure 40. Combined sector predicted impacts by LCA and year IOU 1-in-2 weather data, mean over RA 
hours, August (medium forecast) (nonresidential and residential resources combined) 
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At the request of the CPUC, Leap provided CDA with low, medium, and high forecasts for 2020-2023 by 
aggregated impact for each load type. Figure 41 shows the combined sector predicted aggregate load 
impact for low, medium, and high forecast scenarios. The Greater Bay and LA Basin have the highest 
aggregate impacts in each forecast scenario. 

Figure 41. Combined sector predicted aggregate load impact for low, medium, and high forecast 
scenarios  

mean over RA hours, IOU 1-in-2 weather data, and for August of different years 

 

Comparing Current and Prior Estimates 
This report represents the first time Leap’s DR resource has been evaluated using the DR Load Impact 
Protocols. For this reason, certain LIP required tables are not included. (Shown in the table below) 

Table 16. Comparisons of Ex Post to Ex Ante Included in or Excluded from Report 

Comparison 
Included in 

Report 
Excluded from 

Report 
Current Ex Post to Prior Ex Post  ✔ 

Current Ex Post to Current Ex Ante ✔  

Prior Ex Post to Prior Ex Ante  ✔ 
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Current Ex Ante to Prior Ex Ante  ✔ 
 

Comparison of ex ante model predictions to ex post observations 
In order to compare ex ante results to ex post results, we fit ex ante models to the ex post data from 
2019 and used them to forecast the ex post load impact per meter for the ex ante weather conditions. 
The same models can be used with the actual 2019 conditions as inputs. Results are shown in Table 17. 

 

Table 17. Comparison of 2019 ex post to 2019 ex ante 

Load Type 
Ex Post load impact 

per meter 
Ex Ante load impact 

per meter 
Airconditioning 14.2 14.4 
Electric Vehicle 27.6 36.3 
Large Commercial Battery 47.9 42.2 
Other & Thermal Storage 76.0 70.5 
Pumping 35.5 35.5 
Small Commercial Battery 10.2 10.2 
Residential Airconditioning 0.6 0.5 
Residential Battery 0.3 0.5 

 

We expect fairly close agreement between observations and predictions because we are comparing the 
model to the data on which it was trained. However, the Bayesian ex ante models are constrained so 
that the actual load impact of an event cannot be negative (although the estimated load impact can be): 
we do not think there is any realistic mechanism by which customers would increase their load in 
response to an event. This introduces some asymmetry to the predicted load impacts in some situations: 
although the estimated aggregate event impact is very low or even slightly negative for some load types 
in some LCAs, with error bars extending below zero, the ex ante models effectively redistribute the 
portion of the probability distribution that is below zero, moving it in to low positive numbers.  On the 
other hand, the model also adjusts for the fact that it is possible to have a very high load impact 
estimate by combining high actual impact with positive random variation in the estimated load impact. 
High estimated load impacts in an LCA – compared to other LCAs – are pulled towards the overall mean, 
by an amount that depends on the strength of the evidence from test events that the load shed is 
actually very high. For both of these reasons, the ex ante load impact should not and do not perfectly 
match the ex post load impact. 

Errors and Uncertainties 
In this section we discuss the reasons the forecasts of the future (and current) load impact capacity are 
likely to differ from the actual capacity, and the ways we have tried to characterize the likely magnitude 
of the difference.  We begin by discussing the most important sources of potential error, starting from 
the ex post results and working our way to the ex ante forecasts. We then introduce the key concepts of 
the Bayesian models that help these models quantify the uncertainty. The detailed models are 
presented in Appendix E. 

“It’s tough to make predictions, especially about the future” – Yogi Berra (attributed) 
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Any prediction can be wrong. In this report we predict what would happen if Leap were to call their 
entire resource to provide demand response load shed on a future date on which there are specific 
weather conditions. Here are some factors that affect the accuracy and precision of those predictions: 

1. We do not know the exact ex post load shed. Yogi was right that predictions about the future 
are especially hard, but in this case even predicting the past is not easy; we do not know exactly 
how much load shed Leap’s customers provided in their 2019 events. Load shed cannot be 
directly measured: the meter can only tell us how much energy the customer used, not how 
much they would have used in the absence of a DR event. To quantify the performance of their 
customers in 2019, we have to predict the amount of energy they would have used if there were 
no event, and subtract this from the amount they actually used. This prediction can be wrong. 
Indeed, it is essentially impossible that it is perfectly correct. As discussed in the Ex Post section, 
we use an empirical approach to quantify the statistical distribution of errors that are expected 
to occur. For any given event we don’t know the exact value of the error, of course (if we did we 
would remove it) but the distribution of possible values of baseline error produces a distribution 
of possible values of load impact; the width of that distribution is what we call the ‘uncertainty’ 
in the load impact. For any individual event, the uncertainty in load impact can be a fairly large 
percentage of the impact, but the uncertainty in the average over many events is much lower. 
 

2. There may be systematic change in customer performance. Even if we knew the exact amount 
of load shed provided by each customer for each event in 2019, we would not know exactly how 
much the same customers would provide in 2020. Changes in operational practices, economic 
conditions, and other factors can lead to an overall shift that would affect both existing 
customers and new recruits. Agricultural groundwater pumping can increase or decrease due to 
year-to-year differences in regional rainfall or crop type using the water. Electric vehicle 
charging will change depending on the market penetration of electric vehicles and on the 
behavior of EV owners (for instance, as battery capacities increase, the average EV trip distance 
may go up, leading to higher charging requirements and thus potentially increased DR load 
impact). Additionally, Leap indicates the possibility of upward performance potential as they 
work with partners over multiple years, leading to increased performance and an improved 
testing regime that more accurately characterizes resources' availability. 
 

3. Spotty temporal coverage in the ex post data leads to inability to fully capture seasonal 
variability. Leap called DR events for only parts of 2019. Residential air conditioning events were 
called only in June and August, to give the most extreme example. All of Leap’s resources were 
exercised in at least some summer months, so we do have data from the most important part of 
the year, but we have no way to estimate systematic seasonal variation for most of the load 
types, other than variation associated with temperature.  
 

4. Spotty spatial coverage in the ex post data leads to inability to fully capture spatial variability. 
Leap is planning to expand their program into areas where they currently have few or no 
customers. There is spatial variability in load impacts, and we have insufficient data to quantify 
this, or to know whether the new areas into which they expand will provide more or less load 
shed per customer than the ones represented in the 2019 data. 
 

5. There is a lot of uncertainty in Leap’s future enrollment, whether in terms of enrolled 
customers, or load impact capacity, or any other metric.  Leap has grown quickly and expects to 
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continue growing in the future, but nobody can be sure of an accurate prediction of how quickly 
their capacity will grow, either overall or in specific LCAs and load types.  

We cannot eliminate the sources of uncertainty listed above. The spatial coverage is spotty because 
Leap does not yet have customers in certain areas of the state; the temporal coverage is spotty because 
they did not have customers in some months; systematic changes in customer behavior cannot be 
estimated for the past or predicted for the future based on data available to us.   

For a given load type, we would not expect to be wildly wrong if we assume the load shed per customer 
in the future will be roughly what it was in 2019 in the same month of the year – or the load shed as a 
percent of aggregate baseline load -- even if many new customers are added in different locales. But we 
also would not expect the load shed per customer, or the load shed as a percent of baseline load, to be 
unchanged as new customers are added in different places. Part of the goal of our modeling is to try to 
quantify how different things can be, even if Leap is successful in the sense of adding enough customers 
that they have reasonable expectation of meeting their forecast of future capacity. 

The modeling gives us a way to quantify the uncertainties that are due to effects 1-4. As discussed in the 
modeling appendix there are choices in the models that could lead to higher or lower uncertainties, but 
at least there is a well-defined way of estimating those uncertainties. But the largest source of 
uncertainty is how much Leap will grow.  

Leap has provided high, medium, and low growth scenarios. Leap has forecasted how much load shed 
capacity they will have in each year. This contrasts the usual approach with which we are familiar, which 
is to forecast a number of customers and then model the load shed per customer, but we see no reason 
to believe it would be easier or more accurate to forecast the growth in the number of customers than 
the growth in load shed capacity. However, it does lay bare the extent to which the outcome of the ex 
ante forecasts is driven by the growth forecast.  

As discussed earlier in the report, even though Leap has provided forecasts of load impact we have 
opted not to take those at face value. Instead we have chosen to interpret Leap’s forecasts in terms of 
growth relative to their 2019 ex post impacts. This yields a growth curve in customer counts based on 
the assumption per-customer load impacts remain the same as in 2019, but there is potential for higher 
or lower impacts depending on the character of new customers. Due to small sample sizes, and in some 
cases small numbers of events, even the LCAs in which Leap currently has customers may not be well-
characterized in terms of the load shed they can offer.  

 

Recommendations 
Based on our evaluation of the 2019 dispatch of Leap’s DR resource, we provide the following 
recommendations to Leap: 

● Call some longer-duration and full-resource events that can provide statistical support for full-
resource and 4-hour+ RA window events that Qualifying Capacity numbers are based upon. 

● Call events during more months of the year to gather information about seasonality and 
weather influences on event impacts. 

Recommendations for future evaluators: 

● Investigate baselining and comparison group methodologies for estimating event impacts that 
best characterize impacts for groups with few participants, varied events, and noisy baselines. 
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This could include Leap dispatching at least a subset of their future events with true randomized 
controls. 

● Study two load types where Leap forecast high future impacts.  
o Closely monitor the EV impacts during any future test events to ensure Leap is obtaining 

an event response that is consistent across all event hours. 
o Evaluate future test events on residential batteries to determine if the simulated event 

impacts within the ex post analysis are comparable to actual events. Compare not only 
the average impacts, but the impacts over the test period. 

● Consider how best to apply LIPs so that they align with the needs of third party and emerging 
program evaluation. Most notably, the “Typical Event” requirement of Protocol 8 is not 
appropriate to characterize the full resource when all participants are not dispatched for all 
events. Also consider how best to characterize a resource that is growing and/or changing 
rapidly. 

● Investigate ways to characterize and, where possible, measure sources of uncertainty, such as 
between customer variation, variation in event participation, and variation in load and customer 
types. 
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Appendix A: About Leap 
CDA notes: The content in this section is provided for context on the resource being evaluated. Leap 
wrote it all and CDA has not evaluated any claims made or altered it in any way. 

Leap enables real-time automated trading on energy markets. Leap’s marketplace for grid flexibility 
grants energy resources including battery energy storage, electric vehicles, HVAC systems, pumping 
loads, and more access to global demand response programs, wholesale markets, and real-time pricing 
through a single API. 

Leap’s open, hardware-agnostic platform turns the operators of energy resources of any size and type 
into responsive sources of grid flexibility, providing revenue to participants while unlocking the benefits 
of a truly resilient and transactive grid. 

Leap’s ability to aggregate multiple load types and sizes into larger blocks creates higher value grid 
resources and helps our partners to realize the full value of their automated resources in the wholesale 
market. Our business model helps Leap serve smaller loads cost-effectively and brings new Demand 
Response participants into the market. Leap is a privately held company with offices in San Francisco 
and the Netherlands. 

History 

Leap was founded in 2017, won capacity through the California Demand Response Auction Mechanism 
(DRAM) in 2018, and became an active Scheduling Coordinator and Demand Response Participant in the 
CAISO system in 2019. Leap has forged partnerships with a number of leading distributed energy 
solution (DER) solution providers, expanding in both customer base and geographic reach within and 
beyond California. Leap delivered Resource Adequacy to PG&E and SCE in 2019 and will be expanding to 
deliver RA to SDG&E as well in 2020. Leap has received recognition as a clean energy technology leader, 
including being selected to join Elemental Excelerator’s 8th cohort in December 2019 to help California’s 
agricultural customers to earn revenue in California’s electricity markets. Leap was also recognized in 
January 2020 as Cleantech Group’s Early Stage Company of the Year as part of the 2020 Global 
Cleantech 100. 
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Appendix B: Leap enrollment forecast rationale [removed from public 
version] 
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Appendix C: Leap discussion on controlling load by load type 
[removed from public version] 
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Appendix D: Known 2019 Event Failures and Solar and Storage Event 
Operation [Removed from public version] 
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Appendix E: Ex Ante Models 
This appendix describes CDA’s approach to the ex ante modeling as well as providing an example of 
modeling code for one load type (residential air conditioning). 

The goal of the ex ante models is to allow prediction of the aggregate load impact, by LCA, if Leap’s 
entire resource is dispatched in standardized weather conditions.  

Leap provided CDA a forecast of their available capacity, by SubLAP, for each of the next ten years, 
which CDA rolled up to an LCA for modeling. Taken at face value, their forecast directly answers the 
question for ex ante. But of course, even if Leap knew how many meters they would have for each load 
type in each LCA in each future year, they would not know what impact capacity those meters would 
actually be able to provide. To quantify uncertainties in Leap’s forecast, we use their forecast numbers 
(of capacity in each SubLAP, by load type) as the expected load impact (‘expected’ in the statistical 
sense), but use a model that takes into account many of the ways the true value could vary from the 
expected value.   

Leap’s 2019 events provide an estimated load shed per meter in each load type. An estimate of the load 
impact capacity they will have in the future can be obtained by multiplying the estimated load shed per 
meter from the 2019 data by the expected number of meters in the future. We applied this formula in 
reverse: given Leap’s forecast of their load impact capacity in the future, we divide by the estimated 
load impact per meter in 2019 to get a forecast for the number of meters. We then ask: if this number of 
meters is obtained, what might the load impact actually be? 

We used several different models, with the choice depending on whether the load impact is expected to 
be temperature-dependent: Residential and nonresidential air conditioning, and residential batteries, 
were assumed to have temperature-dependent loads. All other loads were assumed non-temperature-
dependent.  

Residential battery systems deserve some discussion to explain their observed (and expected) load 
impact characteristics: The temperature-dependence of the residential battery model is intended to 
help capture the seasonality of insolation and to serve as a proxy for cloudiness (temperatures higher on 
sunny days). The batteries are usually charged fully before the 4 pm start of the RA window, but on hot 
days, their capacity can be exhausted before the end of the event due to high AC loads. When the 
battery is fully discharged, it cannot reduce load. Therefore, the DR performance of a group of 
residential batteries tends to be worse on sunny summer days than on cloudy days.  

Whether temperature-dependent or not, all of the models share the same basic structure: 

1. The estimated load shed for an ex post event in a given LCA is assumed to be a random sample 
from a distribution centered on a ‘true load shed’ for that event in that LCA, with the width of 
the distribution determined by the uncertainty of the estimate.  

2. The true impact for the event is assumed to be a random sample from a distribution centered 
on an overall mean. This mean is either a constant (but unknown) value associated with the LCA, 
or, in the temperature-dependent models, a constant LCA -specific value plus the product of an 
LCA-specific regression coefficient times the number of degrees by which the temperature 
exceeds 70 F 

A model in which the observed values are assumed to be drawn from a distribution around a true value 
(such as the LCA mean), and the true values are assumed to be drawn from a distribution about yet 
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another value (such as the mean of all LCAs), is called a ‘Bayesian hierarchical model’ or a ‘multi-level 
model.’  Describing such models in detail is far beyond the scope of this report. An excellent freely 
available resource is Bayesian Data Analysis, by Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin, which 
is available at http://www.stat.columbia.edu/~gelman/book/BDA3.pdf  Our non-temperature-
dependent models are very similar to the classic ‘8 schools’ model of Rubin, as described starting on p. 
119 of that book; the temperature-dependent part is a logical extension. 

We strongly recommend reading the portion of the book described above if you are not familiar with 
Bayesian models, but we will say a few words about them here in the context of sources of uncertainty 
and error that were discussed earlier. As previously noted, the ex post load impact for an event is not 
known exactly: it is an estimate that is subject to baseline error. There is some ‘true’ event impact – the 
value that would have been obtained if the measurement had no error, but we do not know what it is. 
Additionally, when only a few DR events are conducted there is always the possibility, indeed the near 
certainty, that the average event impact will be higher or lower than what would have been seen if 
many more events had been conducted. There is some ‘true’ event mean, but we do not know what it 
is.  And finally, the ex ante predictions for this program require predictions for some load types to be 
made in LCAs where Leap does not yet have any data; the mean impact in those LCAs will differ from the 
LCAs for which there is data --- there is surely some variation from LCA to LCA – but we don’t know 
whether those new LCAs will be higher or lower, or by how much..  

A Bayesian model cannot tell us these unknown values – you cannot squeeze blood from a stone -- but it 
can help constrain them. For instance, all of the LCAs for which we do have data have similar 
temperature coefficients – similar to each other – then it is likely that the new LCAs will not fall far from 
those values. But if all of the LCAs for which we have data appear to be very different from each other in 
terms of load impact, then the new LCAs could fall anywhere within a wide spread. A Bayesian 
hierarchical model provides a statistically valid way of quantifying the uncertainties in all of the numbers 
and distributions, and thus obtaining reasonable uncertainty estimates. 

We use ‘informative prior distributions’ to help constrain some of the values for which there is not 
enough data to estimate them precisely. For example, in the Residential Air Conditioning model (given 
below in full) we assume that the amount by which the mean per-meter event impact can vary from 
event to event, for an event at a given outdoor air temperature, is probably less than 0.4 kW. That is, if 
we knew precisely the actual load impact (as opposed to the estimated load impact) for many events 
that took place at 80 F, we think most of them would be within 0.4 kW of the overall mean of those 
events. We provide this ‘prior information’ by assuming the sigma parameter in the model is drawn 
from a half-normal distribution with standard deviation 0.2; see the model below, which, like all of the 
models, is implemented in the Stan language. 

Many people new to Bayesian statistics balk at the idea of ‘informative prior distributions’, which 
basically serve to put a thumb on the scale. Ironically, some people who would have no problem with 
simply applying a program-wide estimate of, say, the mean load shed for electric vehicle battery 
chargers, balk at the idea of assuming the value varies from LCA to LCA but constraining the amount of 
variation. But assuming there is a single program-wide value is equivalent to allowing variation from LCA 
to LCA but setting the amount of variation to exactly zero!  

Models were fit separately for: the two hours prior to the event; the event itself; the four hours after 
the event. This was done to capture pre-cooling and rebound if present. These phenomena were 
observed for the air conditioning loads (residential and nonresidential) but not for the other load types. 
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Code for the Residential Air Conditioning Model 

data { 

  int <lower = 0> N_data_rows; 

  int <lower = 0> N_pred_rows; 

  int <lower = 0> N_groups; 

  int <lower = 0> N_months;  

  int             month[N_data_rows]; 

  int             group[N_data_rows]; 

  int             month_pred[N_pred_rows]; 

  int             group_pred[N_pred_rows]; 

  vector [N_data_rows] impact_per_participant; 

  vector [N_data_rows] impact_err; 

  vector [N_data_rows] frac_impact; 

  vector [N_data_rows] frac_impact_uncert; 

  vector [N_data_rows] temp70; 

  vector [N_pred_rows] temp70_pred; 

  vector [N_data_rows] temp; 

  vector [N_pred_rows] temp_pred; 

} 

 

parameters { 

  real   <lower = -1, upper = 1>  theta_group;  // mean load shed 

                                              // (below 70 F) of 

                                              // dist'n from which  

                                              //group means are drawn. 

  real   <lower = 0, upper = 1>   tau;      // dispersion parameter 

                                            // for dist'n of group 

                                            //  means around overall 

                                            // group mean. 

  real   <lower = 0, upper = 1>   sigma;    // dispersion parameter 

                                            // for true impact around 

                                            // group mean. 

  real   <lower = 0, upper = 1>   sigma_temp; // how much do different 

                                              // groups vary in 
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                                              // temperature response? 

  real   <lower = 0>               beta_temp_mean; 

  vector <lower = 0> [N_data_rows] true_impact; 

  vector <lower = 0, upper = 1> [ N_groups] mean_shed;  

  vector <lower = 0> [N_groups]    beta_temp; 

} 

 

model { 

  sigma ~ normal(0,0.2); // How much can true impact differ from 

                         // predicted impact, in either direction, 

                         // if we knew the prediction parameters 

                         // perfectly? (This is variation due to        

                         // parameters not in the model). 

  tau   ~ normal(0,0.03);  // How variable are intercepts? 

  theta_group ~ normal(0, 0.02); // We know that below 70 F there 

                            // can't be much load impact, if any.  

  beta_temp_mean ~ normal(0.0, 0.03);  // We expect something like 0.5 

                      // kW at 80 or 85 F, from other programs,  

                      // so have a prior that is consistent with 

                      // that but has lots of probability below that.  

                                             // Pool towards 0 to be 
deliberately conservative.  0.03 would mean 0.3 kW per 10F.  

  sigma_temp  ~ normal(0, 0.02);     // Some variation between LCAs.  

 

  mean_shed ~ normal(theta_group, tau ); // distribution of individual 

                                         // groups around overall mean 

  beta_temp      ~ normal(beta_temp_mean, sigma_temp); 

   

  for (row in 1:N_data_rows) { 

    if (temp[row] > 50) 

      true_impact[row] ~ normal( mean_shed[group[row]] + 

                       beta_temp[group[row]] * temp70[row], sigma); 

    else 

      true_impact[row] ~normal( 0, 0.0001); 
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    impact_per_participant[row] ~ student_t(6, true_impact[row], 

                                                  impact_err[row] ); 

  } 

} 

 

generated quantities { 

  vector [N_pred_rows] pred_impact; 

 

  for (row in 1:N_pred_rows) { 

    if (temp_pred[row] > 50)   

      pred_impact[row] = normal_rng( mean_shed[group_pred[row]] + 

               beta_temp[group_pred[row]] * temp70_pred[row], sigma);  

    else 

      pred_impact[row] = 0.0; 

  } 

} 
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Appendix F: LCA geography 
This image illustrates the geography of California’s LCAs (aka Local Reliability Areas on the map). 

Figure 43. Map of California’s LCAs (aka LRAs) 

 
Original at: https://ww2.energy.ca.gov/maps/reliability/Local_Reliability_Areas.pdf 
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Appendix G: Data Cleaning for Analysis 
An important part of every analysis is preparing data for modeling by checking that the data makes 
sense, is consistent with what is needed and removing unnecessary or problematic data that can cause 
issues. For this evaluation, we went through a series of steps on the combined residential and 
nonresidential data that resulted in removing some data points from the analysis data set. We describe 
those steps here and include Table 18 which shows how many rows of meter data and how many 
meters remain after each step. 

Table 18: Table of drops for analysis data 

Drop Reason 

Nonresidential Residential 
Meter 
Count 

Row Count Meter 
Count 

Row Count 

Original Data 771  6,510,744  6,881  53,889,068  
Holidays and PSPS days 771  6,030,907  6,878  49,756,831  
Weekends 771  4,282,540  6,876  35,315,080  
Incomplete days with less than 24 hours of 
data 770  4,258,056  6,872  35,166,288  
Customers with <20 days of data 766  4,257,024  6,796  35,151,000  
Residential customers with no events   6,689  34,671,192  

 

We dropped data for a variety of reasons, mostly because the meters data fell on days incompatible 
with demand response. These are full explanations for each drop reason: 

1. Drop holidays and PSPS days – We removed NERC holidays from the data, and dropped PSPS 
days, since on both of these day types, customers use energy much differently than on regular 
weekdays 

2. Drop weekends – We removed weekends from the data because customers use energy 
differently on the weekends than weekdays 

3. We dropped individual days from meters where one or more hour of data is missing as this 
causes problems with many algorithms 

4. We dropped customers with fewer than 20 days of data. We consider 20 days an absolute 
minimum to develop baselines and model customers. These 76 residential and 4 non-residential 
customers enrolled after all events 

5. We dropped residential customers who were enrolled by Leap after all events.  

The hours of meter data and customers that we removed from the analysis data were all because that 
information was not useful to the analysis, rather than dropping customers who participated in events. 
The final analysis data contains very complete information for participating customers on non-holiday, 
non-PSPS weekdays.   
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Appendix H: Data Cleaning and Analysis for Residential Batteries 
[removed from public version] 
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Appendix I: Response to PAO’s draft report review 
In this appendix we reproduce the CPUC Public Advocate Office’s (PAO) comments on the DRAFT load 
impact evaluation, submitted on 5/15/2020, and provide detailed and point by point responses. The 
PAO was critical of several aspects of the evaluation, but we believe several of the comments are based 
on misinterpretations of the context of the cited numbers or figures. Since that confusion can likely be 
traced to the manner in which the results were presented in the DRAFT deliverables, we hope to clarify 
our understanding of Leap’s resource in this appendix. 

CDA commentary will be in Time New Roman italics. 

First, some necessary background:  

(1) This is Leap’s first year calling events in support of LIP evaluation and their first evaluation 
under the LIPs. All of the events called were test events and they structured their tests to 
incrementally call all of their enrolled customers over the course of the summer of 2019. As a 
result, the aggregate performance of any given test event reflects only a small fraction of their 
enrolled customer base. 

(2) Leap’s DR resource is composed of a mix of very heterogeneous load types, including 
agricultural pumping, commercial EV chargers, commercial battery systems, commercial AC, 
residential AC, residential battery systems, etc. Although there is nothing “wrong” with doing so, 
no IOU program in existence aggregates across load types in this manner. The heterogeneity of 
the resource required careful thought around the methods of impact evaluation, but also 
presented particular challenges around questions of enrollment and participant counts across 
load types.  

(3) The LIPs are clear and prescriptive on the meaning of “Typical Event” in the context of the 
report and table generators. Protocol 8 states: “An average event day is calculated as a day-
weighted average of all event days.” And then clarifies: “it is the sum of the impacts in each 
hour for each event day divided by the number of event days. The reason to think of this as 
a day-weighted average is because the weights to use when calculating the standard errors 
are squared.” This definition does not allow for the averages to be weighted by participant 
count, which is the correct way to compute the expected value of events with varying 
participation numbers and they certainly don’t represent the performance of the full set of known 
participants, although that is often how “Typical Event” numbers are interpreted.  

(4) Taking all three of the above into account – the incremental nature of the test events, the 
heterogeneity of participants, and the requirement that we perform straight averages to obtain 
Typical Event numbers, the Typical Event numbers are largely meaningless to any question of 
Leap’s aggregate potential. However, most IOU program “Typical Event” calculations are 
reasonable estimates of full resource potential, so there is bound to be confusion around the 
meaning and reasoning behind Leap’s Typical Event. For example, one large pump could be used 
to achieve similar impact to 1000 residential AC customers, so it does not mean much to say that 
the average enrollment between a hypothetical event dispatching one pump and another 
dispatching 1000 residential thermostats was 500.5. Similarly, the unweighted combination of the 
uncertainties across events is very large due to the large variation in customer size, load types, 
and which customers were called. The uncertainty for Typical Events primarily represents 
variation across events rather than uncertainty in the resource capacity.   

PAO’s comments on the DRAFT evaluation report and underlying data: 
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1. Leap’s 2019 ex post estimates show no event impact. CDA reports ex post nonresidential load 
impacts for 26 Leap Demand Response (DR) events in 4 months of 2019. The average estimated 
impacts in April, May and June include zero in the 80% confidence interval (DRAFT figure 14) 
indicating that Leap’s DR events did not have a verifiable impact for those months. The remaining 
month, August, does not include zero in the confidence interval, but the lower bound appears to be 
almost zero.2 Therefore, given that Leap uses the highly imprecise confidence measure level of 80%, 
it is likely the August interval would also include zero if CDA reported at more generally accepted 
level such as 90% or 95%.  

We have updated to reporting 90% intervals, but we note that these comments conflate confidence 
interval extent and expected impacts – the mean is the expected impact. The confidence range is a 
measure of certainty and can be used to make statements like “if the same event were repeated over 
and over under the same conditions, the resulting confidence intervals would be expected to include 
the true impact 90% of the time”, but the errors on events involving small groups of customers 
crossing zero cannot be used to accept the “null” hypothesis that “the resource delivers no value”. 
The mean IS the expected impact, with much of the uncertainty due to noise in the baselines, 
especially across relatively few participants. Further, and most importantly, large uncertainties from 
the specific sub-groups of customers who participated in events each month do not necessarily result 
in large uncertainties in performance estimates of the full resource if it were to be called all at once.  

If you want to draw conclusions about the full resource, you have to look at estimates of performance 
based on the full resource. As evaluators, we tend to think of ex post as our opportunity to study the 
various influences on average impacts per-participant. Those are the basis for the modeling (i.e. 
controlling for outside temperature, load type, time of day, etc.) that takes place in ex ante. However, 
we’ve realized that we failed to provide a concise representation of the “Full resource” ex post as 
opposed to “Typical event” ex post aggregate performance and uncertainties in the report and table 
generators. We have corrected this deficiency, so assessments of the resource as observed can be 
made more easily moving forward. 
Furthermore, the uncertainty seen in the ex post impact estimates tables indicates that Leap may 
not have delivered any value to ratepayers in 2019. Table 1 shows average per meter results for a 
typical Leap event from 6pm - 7pm in PG&E territory. 
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The large differences in the uncertainty adjusted impacts,4 which range from load reductions many 
times greater than the average customer’s peak demand to load increases of a similar magnitude, 
show how meaningless the estimated impacts are. For example, these figures show a 10% 
probability that the impact during these 2019 event hours was either less than -312.56 kWh/hr or 
that it exceeded 342.55kWh/hr. Given that the estimated reference load during event hours was 
52.7 kWh, these wildly swinging ex post results do not demonstrate that Leap provided ratepayers 
any actual load reduction benefits. 

Once again, we point out that our hands were tied by Protocol 8 when calculating “Typical Event” 
performance. Typical Event numbers are the simple average across called events, but because Leap 
called their resource incrementally across many test events, that average has little to no bearing on 
the question of their full resource potential. We have now added this missing information by 
calculating “Full Resource Estimates” of event performance based on per-participant event 
performance across all events multiplied by enrollment, being careful to compute all per-participant 
and aggregate values by load type before rolling them up to full totals since participant counts lose 
their meaning when averaged across load types. 

2. Leap’s ex ante estimates should be discounted considering the uncertainty present in their ex 
post estimates and the lack of transparency into Leap’s ex ante estimate methodology. The 
results of CDA’s ex post analysis are used to inform their ex ante impact estimates based on the 
expected per meter load shed of a particular customer type. Given the concerns raised in the 
previous section, the estimated impact per meter is entirely unreliable. The data as presented does 
not verify that Leap provided any significant impacts or even had the capability to provide energy 
when a DR event is called. Therefore, there is no empirical evidence on which to base Leap’s 
forecasted load impact. 

Resource wide per-meter estimated impacts are not “entirely unreliable” for reasons already stated 
above – most of the figures on ex post are based on incremental events that called just a small 
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fraction of the full resource. New report tables provide standard errors and confidence intervals on 
the ex post numbers aggregated using 2019 enrollment and the confidence intervals are clearly 
tighter than those from individual events and are not close to including zero. This updated look at the 
full resource should constitute more clear evidence for Leap’s resource value. 

Moreover, Leap did not provide CDA customer enrollment forecasts.6 Instead, Leap provided 
megawatt capacity forecasts, essentially skirting the LIP process by performing its ex ante estimates 
outside of the regulated process.  

Due to the heterogeneity of their resource, Leap plans and forecasts in terms of capacity. After 
consideration, CDA saw no value in making the forecast look like enrollment by having Leap do 
the conversion themselves (see the paragraph below). Instead, CDA elected to accept the 
forecast in terms of capacity.  
 
We see no place in the LIPs where the forecast is required to be made in terms of enrollment. They 
do make clear that the forecast is not to come from the evaluators and that the evaluator should 
adopt a consultative stance on topics related to what the forecast contains: “For example, 
forecasting the size or makeup of the participant population at some future point in time is 
not part of impact estimation. Rather, impact estimation concerns estimating demand 
response given assumptions about the size and makeup of the participant population that 
are provided to the evaluator by someone else (e.g., regulators, planners or some other 
stakeholder). Having said that, the evaluator has an important role in guiding the 
development of data needed to make such estimates, in that he or she must tell the 
interested user what information is needed.” In the case of Leap’s plans for the future, the 
most salient issue is that due to the heterogeneity of Leap’s resource (i.e. coming from a wide 
variety of load types with widely varying participant “sizes” and expected impacts) and the fact 
that their “product” is load impact capacity, they conduct all of their internal planning and 
modeling in terms of capacity as well. To convert their capacity recruitment goals into 
enrollment, they would need to know their per-customer impact, so they face a chicken and egg 
problem. It seems to us that forecasting in capacity relative to 2019 is a reasonable solution to 
that problem and any conversion they would make to enrollment would be a superficial change. 
 
Our updated Enrollment Forecast section confirms that CDA normalized the capacity forecast at 
2019 = 1 and tracked subsequent years as multiples of the initial year. This was done separately 
for each load type/sub-LAP. Then we applied those scaling factors to 2019 actual enrollment to 
obtain calibrated enrollment estimates. Finally, those calibrated enrollment numbers were used 
to multiply the ex ante per-customer predictions. In this manner, we applied the relative growth 
implied by Leap’s forecast without deterministically producing their capacity goals. However, 
because ex ante capacity was largely dictated by the forecast, we advise the relevant authorities 
to review the enrollment numbers behind the ex ante estimates. If the enrollment seems plausible, 
then the capacity should be judged plausible and vice versa. 
 
Leap is therefore proposing to sell California ratepayers a product into which customers have no 
insight. The ex-ante load impact estimates rely on confidential internal proprietary growth models. 
The Commission should give no weight to Leap’s ex ante forecasts unless more transparent and 
evidence-based estimates are provided. 
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As their evaluator, we have seen and grown familiar with several aspects of the set of information 
Leap considers confidential and believe their stated purpose wanting to avoid public disclosure of 
sensitive information to their competitors is legitimate. For a private company in a competitive field, 
it is common for growth plans in particular to be sensitive. Further, there is nothing unusual about 
the exclusions - it is routine for sensitive information to be redacted from public evaluation reports. 
The reason that practice has been deemed acceptable is that private versions of all reports and data 
are furnished to the CPUC (as Leap has done in this instance), which has a duty to verify that the 
public interest is being served even when considering the redacted portions of evaluations. As a part 
of the PUC, PAO is authorized to access such confidential information for legitimate review 
purposes, so it does not appear to us that the PAO has a structural disadvantage in learning what 
Leap’s forecasts are based on. Given that the CPUC has access to the confidential forecasts that they 
can judge for themselves, there is no basis in the protocols or precedent from prior evaluation work 
that they should give them no weight because they are classified as confidential. 


